ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 8 of 8
Ukr. Bot. J. 2018, 75(4): 384–391
Plant Physiology, Biochemistry, Cell and Molecular Biology

Endogenous cytokinins dynamics during development of sporophytes of perennial ferns Dryopteris filix-mas and Polystichum aculeatum (Dryopteridaceae)

Vedenicheva N.P., Kosakivska I.V.

The qualitative composition and dynamics of cytokinins in the fronds and rhizomes of perennial ferns Dryopteris filix-mas and Polystichum aculeatum have been investigated using high-performance liquid chromatography in combination with mass spectrometry. Sporophytes were studied at the stages of intensive vegetative growth (April), formation of sporangia (May) and sporulation (June). Plants of P. aculeatum were also analyzed at the stage of winter vegetation (February). The accumulation of trans-zeatin in fronds of P. aculeatum was revealed at the intensive growth stage, whereas in D. filix-mas, the increase in this cytokinin content was observed during the formation of sporangia. The level of zeatin riboside increased in fronds and rhizomes of both fern species at the stage of sporulation. The cessation of the ferns intensive growth involved the accumulation of conjugate – zeatin-O-glucoside. At certain stages of sporophyte development, isopentenyl-type cytokinins were detected: in D. filix-mas, low levels of isopentenyladenine – during sporulation, and in P. aculeatum, quite significant amounts of isopentenyladenosine and isopentenyladenine – in fronds at the stage of intensive growth and in rhizomes – during sporangia formation. In P. aculeatum fronds, active free cytokinins – zeatin and zeatin riboside – were accumulated during the winter vegetation indicating that they were involved in the maintenance of the plant photosynthetic activity under unfavorable conditions. The root system of both fern species was characterized by a lower level of cytokinins as compared to the aerial part. The dynamics of the spectrum and content of cytokinins in the fern organs was species-specific and indirectly testified to the involvement of these phytohormones in growth and development control. The features of differences and similarities of the regulatory role of cytokinins in ferns and seed plants are discussed.

Keywords: Polystichum aculeatum, Dryopteris filix-mas, cytokinins, fern, growth, development

Full text: PDF (Eng) 702K

  1. Abul Y., Menéndez V., Gómez-Campo C., Revilla M.A., Lafont F. Occurrence of plant growth regulators in Psilotum nudum. J. Plant Physiology, 2010, 167(14): 1211– 1213.
  2. Aloni R., Aloni E., Langhans M., Ullrich C.I. Role of cytokinin and auxin in shaping root architecture: Regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann. Bot., 2006, 97: 883–893.
  3. Babenko L.M., Skaterna T.D., Kosakivska I.V. Lipoxygenase activity in ontogenesis of ferns Salvinia natans and Polystichum aculeatum. Ukr. Biochem. J., 2017, 89(4): 5–12.
  4. Babenko L.M., Romanenko K.O., Shcherbatiuk M.M., Vasheka O.V., Romanenko P.O., Negretsky V.A., Kosakivska I.V. Effects of exogenous phytohormones on spore germination and morphogenesis of Polystichum aculeatum (L.) Roth gametophyte in vitro culture. Cytology and Genetics, 2018, 52(2): 117–126.
  5. Bonomo M.C., Martinez O.G., Tanco M.E., Cardozo R., Aviles Z. Spores germination and gametophytes of Alsophila odonelliana (Cyatheaceae) in different sterile media. Phyton (B. Aires), 2013, 83(1): 119–126.
  6. Chiappetta A., Innocenti A.M. Immunocytochemical localization of cytokinin in Azolla filiculoides. Plant Biosystems, 2006, 3: 229–233.
  7. Cortleven A., Schmülling T. Regulation of chloroplast development and function by cytokinin. J. Exp. Bot., 2015, 66(16): 4999–5013.
  8. De Vries J., Fischer A.M., Roettger M., Rommel S., Schluepmann H., Brautigam A., Carlsbbecker A., Gould S.B. Cytokinin-induced promotion of root meristem size in the fern Azolla supports a shoot-like origin of euphyllophyte roots. New Phytologist, 2016, 209(2): 705–720.
  9. Greer G.K., Dietrich M.A., De Vol J.A., Rebert A. The effects of exogenous cytokinin on the morphology and gender expression of Osmunda regalis gametophytes. Amer. Fern J., 2012, 102(1): 32–46.
  10. Jameson P.E., Song J. Cytokinin: a key driver of seed yield. J. Exp. Bot., 2016, 67(3): 593–606.
  11. Ivanov V.B., Filin A.N. Cytokinins regulate root growth through its action on meristematic cell proliferation but not on the transition to differentiation. Functional Plant Biology, 2017, 45(2): 215–221.
  12. Kieber J.J., Schaller G.E. Cytokinins. The Arabidopsis Book, 2014, 11: e0168.
  13. Kosakivska I.V., Babenko L.M., Shcherbatiuk M.M., Vedenicheva N.P. Voytenko L.V., Vasyuk V.A. Phytohormones during growth and development of Polypodiophyta. Advances in Biology & Earth Sciences, 2016, 1(1): 26–44.
  14. Kotukhov Yu.A. Bull. Main Bot. Gard., 1974, 94: 10–18.
  15. Kyozuka J. Control of shoot and root meristem function by cytokinin. Curr. Opin. Plant Biol., 2007, 10: 442–446.
  16. Mok D.W.S., Mok M.C. Cytokinin metabolism and action. Annu. Rev. Plant Physiol. Plant Mol. Biol., 2001, 52: 89–118.
  17. Menéndez V., Revilla M.A., Fal M.A., Fenández H. The effect of cytokinins on growth and sexual organ development in the gametophyte of Blechnum spicant L. Plant Cell Tiss. Organ Cult., 2009, 96: 245–250.
  18. Menéndez V., Abul Y., Bohanec B., Lafont F., Fernández H. The effect of exogenous and endogenous phytohormones on the in vitro development of gametophyte and sporophyte in Asplenium nidus L. Acta Physiologiae Plantarum, 2011, 33(6): 2493–2500.
  19. Osugi A., Sakakibara H. How do plants respond to cytokinins and what is their importance? BMC Biology, 2015, 13: 102.
  20. Plackett A.R.G., Huang L., Sanders H.L., Langdale J.A. High-efficiency stable transformation of the model fern species Ceratopteris richardii via microparticle bombardment. Plant Physiol., 2014, 165(1): 3–14.
  21. Pryer K.M., Schneider H., Smith A.R., Cranfill R., Wolf P.G., Hunt J.S., Sipes S.D. Horstails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature, 2001, 409(6820): 618–622.
  22. Rivera A., Conde P., Cañal M.J., Fernández H. Biotechnology and Apogamy in Dryopteris affinis spp. affinis: The Influence of Tissue Homogenization, Auxins, Cytokinins, Gibberellic Acid, and Polyamines. In: Current Advances in Fern Research. Ed. H. Fernández. Cham: Springer, 2018, pp. 139–152.
  23. Rolli E., Brunoni F., Marieschi M., Torelli A., Ricci A. In vitro micropropagation of the aquatic fern Marsilea quadrifolia L. and genetic stability assessment by RAPD markers. Plant Biosystems, 2015, 149(1): 7–14.
  24. Romanov G.A. How do cytokinins affect the cell? Russian J. Plant Physiol., 2009, 56(2): 268–290.
  25. Sabovljević A., Soković M., Glamočlija J., Ćirić A., Vujićić M., Pejin B., Sabovljević M. Comparison of extract bio-activities of in situ and in vitro growth selected bryophyte species. Afr. J. Microbiol. Res., 2010, 4(9): 808–812.
  26. Schaller G.E., Street I.H., Kieber J.J. Cytokinin and the cell cycle. Curr. Opin. Plant Biol., 2014, 21: 7–15.
  27. Shcherbatiuk M.M., Babenko L.M., Vasheka O.V., Kosakivska I.V. Pigments and ultrastructural peculiaries of cell organells of fern Polystichum aculeatum (L.) Roth. at different stages of development. Biol. Stud., 2017, 11(2): 91–102.
  28. Schneider H. Evolutionary morphology of ferns (monilophytes). Annual Plant Reviews, 2013, 45: 115–140.
  29. Spiro M.D., Torabi B., Cornell C.N. Cytokinins induce photomorphogenic development in dark-grown gametophytes of Ceratopteris richardii. Plant Cell Physiol., 2004, 45(9): 1252–1260.
  30. Talla S.K., Panigrahy M., Kappara S., Nirosha P., Neelamraju S., Ramanan R. Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes. J. Exp. Bot., 2016, 67(6): 1839–1851.
  31. Vasheka E.V. The some biological characteristics of ferns of genus Dryopteris Adans introduced into open ground in the Acad. O.V. Fomin Botanical Garden. Bull. Nikit. State Bot. Gard., 2004, 89: 12–15.
  32. Vedenicheva N.P., Musatenko L.I. Visn. Kharkiv. nats. agrar. un-tu. Ser. Biology, 2008, 3(15): 15–23.
  33. Vedenicheva N.P., Sytnik K.M. Cytokinins localization and dynamics in different parts of Equisetum arvense L. Dop. Nac. akad. nauk Ukr., 2013, 11: 150–156.
  34. Vedenicheva N.P. Visn. Kharkiv. nats. agrar. un-tu. Ser. Biology, 2016, 1(37): 6–26.
  35. Vedenicheva N.P., Kosakivska I.V. Ukr. Bot. J., 2016, 72(3): 277–282.
  36. Vedenicheva N.P., Al-Maali G.A., Mytropolska N.Yu., Mykhaylova O.B., Bisko N.A., Kosakivska I.V. Endogenous cytokinins in medicinal basidiomycetes mycelial biomass. Biotechnologia Acta, 2016, 9(1): 55–63.
  37. Vedenicheva N.P., Kosakivska I.V. Cytokinins as regulators of plant ontogenesis under different growth conditions. Kyiv: Nash Format, 2017, 200 pp.
  38. Von Schwartzenberg K., Fernández Núñez M., Blaschke H., Dobrev P.I., Novák O., Motyka V., Strnad M. Cytokinins in the bryophyte Physcomitrella patens: analyses of activity, distribution, and cytokinin oxidase/dehydrogenase overexpression reveal the role of extracellular cytokinins. Plant Physiol., 2007, 145(3): 786–800.
  39. Voytenko L.V., Kosakivska I.V. Dopov. Nac akad. nauk Ukr., 2017, 12: 112–118.
  40. Záveská Drábková L., Dobrev P.I., Motyka V. Phytohormone profiling across the Bryophytes. PLoS ONE, 2015, 10(5): e0125411.
  41. Zürcher E., Müller B. Cytokinin synthesis, signaling and function – advances and new insights. Int. Rev. Cell Mol. Biol., 2016, 324: 1–38.