ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 8 of 9
Up
Ukr. Bot. J. 2017, 74(4): 373–384
https://doi.org/10.15407/ukrbotj74.04.373
Plant Physiology, Biochemistry, Cell and Molecular Biology

Polyphenolic compounds of macrophytes and their ecological importance

Zolotareva O.K., Podorvanov V.V., Dubyna D.V.
Abstract

The physiological role of secondary metabolites of phenolic nature, dependence of their level on growth conditions and stress factors, in particular, on environmental pollution by heavy metals and xenobiotics in higher aquatic plants are considered. Polyphenol biosynthesis is partially regulated by external abiotic signals such as light, temperature, or resource availability. Flavonoids are involved in the protection of plants from oxidative damage caused by the action of xenobiotics, heavy metal ions (HM) or other biotic and abiotic factors. The toxicity of HM is reduced due to the ability of phenylcarboxylic acids, bioflavonoids and a number of other polyphenolic compounds to form complex compounds with metal ions. When the level of HM is raised in the environment, the biosynthesis of flavonoids in macrophytes is stimulated. Data are presented in favor of the participation of polyphenolic compounds in the chemical defence of macrophytes against pathogens and against being eaten by herbivorous insects. In this regard, significant excess of the total content of phenolic compounds in surface and floating leaves as compared with underwater leaves can be attributed to the greater vulnerability of surface organs to stress and damaging effects (high light intensity, UV radiation, insect attack).

Keywords: polyphenols, higher aquatic vegetation, flavonoids, phytoremediation, xenobiotics

Full text: PDF (Ukr) 746K

References
  1. Amaya-Chavez A., Martinez-Tabche L., Lopez-Lopez E., Galar-Martinez M. Methyl parathion toxicity to and removal efficiency by Typha latifolia in water and artificial sediments. Chemosphere, 2006, 63: 1124–1129. https://doi.org/10.1016/j.chemosphere.2005.09.049 https://www.ncbi.nlm.nih.gov/pubmed/16293285
  2. Basile A., Giordano S., Lopez-Saez J.A., Castaldo Cobianchi R. Antibacterial activity of pure flavonoids isolated from mosses. Phytochemistry, 1999, 52: 1479–1482. https://doi.org/10.1016/S0031-9422(99)00286-1
  3. Bauer N., Blaschke U., Beutler E., Gross E.M., Jenett-Siems K., Siems K., Hilt S. Seasonal and interannual dynamics of polyphenols in Myriophyllum verticillatum and their allelopathic activity on Anabaena variabilis. Aquat. Bot., 2009, 91(2): 110–116. https://doi.org/10.1016/j.aquabot.2009.03.005
  4. Boyd C.E. Freshwater plants: a potential source of protein. Econ. Bot., 1968, 22: 359–368. https://doi.org/10.1007/BF02908132
  5. Bragato C., Brix H., Malagoli M. Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Environ. Pollut., 2006, 144: 967–975. https://doi.org/10.1016/j.envpol.2006.01.046 https://www.ncbi.nlm.nih.gov/pubmed/16574288
  6. Buer C.S., Imin N., Djordjevic M.A. Flavonoids: new roles for old molecules. J. Integr. Plant Biol., 2010, 52(1): 98–111. https://doi.org/10.1111/j.1744-7909.2010.00905.x https://www.ncbi.nlm.nih.gov/pubmed/20074144
  7. Calheiros C.S.C., Rangel A.O.S.S., Castro P.M.L. Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater. Water Res., 2007, 41: 1790–1798. https://doi.org/10.1016/j.watres.2007.01.012 https://www.ncbi.nlm.nih.gov/pubmed/17320926
  8. Calheiros C.S.C., Rangel A.O.S.S., Castro P.M.L. The effects of tannery wastewater on the development of different plant species and chromium accumulation in Phragmites australis. Arch. Environ. Contam. Toxicol., 2008, 55: 404–414. https://doi.org/10.1007/s00244-007-9087-0 https://www.ncbi.nlm.nih.gov/pubmed/18214580
  9. Cao T., Xie P., Ni L., Wu A., Zhang M., Xu J. Relationships among the contents of total phenolics, soluble carbohydrate, and free amino acids of 15 aquatic macrophytes. J. Freshwat. Ecol., 2008, 23(2): 291–296. https://doi.org/10.1080/02705060.2008.9664201
  10. Carpenter S.R., Lodge D.M. Effects of submersed macrophytes on ecosystem processes. Aquat. Bot., 1986, 26: 341–370. https://doi.org/10.1016/0304-3770(86)90031-8
  11. Chai T.-T., Ooh K.-F., Quah Y., Wong F.-C. Edible freshwater macrophytes: a source of anticancer and antioxidative natural products, a mini review. Phytochem. Rev., 2015, 14: 443–457. https://doi.org/10.1007/s11101-015-9399-z
  12. Chukina N.V. Strukturno-funktsionalnye pokazateli vysshikh vodnykh rastenii v svyazi s ikh ustoichivostyu: Cand. Sci. Diss. Abstract, Borok, 2010, 20 pp.
  13. Cooper-Driver G.A., Bhattacharya M. Role of phenolics in Plant evolution. Phytochemistry, 1998, 49: 1165–1174.
  14. Deval C.G., Mane A.V., Joshi N.P., Saratale G.D. Phytoremediation potential of aquatic macrophyte Azolla caroliniana with references to zinc plating effluent. Emir. J. Food. Agricult., 2012, 24(3): 208–223.
  15. Dixon R. Natural products and plant disease resistance. Nature, 2001, 411: 843–847. https://doi.org/10.1038/35081178 https://www.ncbi.nlm.nih.gov/pubmed/11459067
  16. Dong J., Mao W.H., Zhang G.P., Wu F.B., Cai Y. Root excretion and plant tolerance to cadmium toxicity, a review. Plant Soil Environ., 2007, 53(5): 193–200.
  17. Durán N., Esposito E. Potential applications of oxidative enzymes and phenoloxidase – like compounds in wastewater and soil treatment: a review. Appl. Catal. B: Environ., 2000, 28: 83–99. https://doi.org/10.1016/S0926-3373(00)00168-5
  18. Elser J.J., Fagan W.F., Denno R.F., Dobberfuhl D.R., Folarin A., Huberty A., Interlandi S., Kilham S.S., McCauly E., Schulz K.L., Siemann E.H., Sterner R.W. Nutritional constraints in terrestrial and freshwater food webs. Nature, 2000, 408: 578–580. https://doi.org/10.1038/35046058 https://www.ncbi.nlm.nih.gov/pubmed/11117743
  19. Erhard D., Gross E. Do environmental factors influence composition of potential allelochemicals in the submersed freshwater macrophyte Elodea nuttallii (Hydrocharitaceae)? Verh. Int. Ver. Limnol., 2005, 29: 287–291. https://doi.org/10.1080/03680770.2005.11902015
  20. Gao Y.N., Liu B.Y., Xu D., Zhou Q.H., Hu C.Y., Ge F.J., Zhang L.-P., Wu Z.B. Phenolic compounds exuded from two submerged freshwater macrophytes and their allelopathic effects on Microcystis aeruginosa. Pol. J. Environ. Stud., 2011, 20(5): 1153–1159.
  21. Gerhardt K.E., Huang X.D., Glick B.R., Greenberg B.M. Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci., 2009, 176(1): 20–30. https://doi.org/10.1016/j.plantsci.2008.09.014
  22. Gross E.M., Feldbaum C., Graf A. Epiphyte biomass and elemental composition on submersed macrophytes in shallow eutrophic lakes. Hydrobiologia, 2003, 506(1–3): 559–565. https://doi.org/10.1023/B:HYDR.0000008538.68268.82
  23. Hadacek F. Secondary metabolites as plant traits: current assessment and future perspectives. Crit. Rev. Plant Sci., 2002, 21: 273–322. https://doi.org/10.1080/0735-260291044269
  24. Harborne J.B. Nature, distribution, and function of plant flavonoids. In: Plant flavonoids in biology and medicine: Biochemical, pharmacological, and structure – activity relationships. Eds V. Cody, E.J. Middleton, J.B. Harborne, New York: Alan R. Liss, 1986, pp. 15–24. https://www.ncbi.nlm.nih.gov/pubmed/3520585
  25. Harborne J.B., Williams C.A. Advances in flavonoid research since 1992. Phytochemistry, 2000, 55: 481–504. https://doi.org/10.1016/S0031-9422(00)00235-1
  26. Ho Y.L., Huang S.S., Deng J.S., Lin Y.H., Chang Y.S., Huang G.J. In vitro antioxidant properties and total phenolic. Bot. Stud., 2012, 53: 55–66.
  27. Jung C., Maeder V., Funk F., Frey B., Sticher H., Frossard E. Release of phenols from Lupinus albus L. roots exposed to Cu and their possible role in Cu detoxification. Plant Soil, 2003, 252: 301–312. https://doi.org/10.1023/A:1024775803759
  28. Ikehata K., Buchanan I.D., Pickard M.A., Smith D.W. Purification, characterization and evaluation of extracellular peroxidase from two Coprinus species for aqueous phenol treatment. Biores. Technol., 2005, 96(16): 1758–1770. https://doi.org/10.1016/j.biortech.2005.01.019 https://www.ncbi.nlm.nih.gov/pubmed/16051082
  29. Khan M.A., Marwat K.B., Gul B., Wahid F., Khan H., Hashim S. Pistia stratiotes L. (Araceae): Phytochemistry, use in medicines, phytoremediation, biogas and management options. Pak. J. Bot., 2014, 46(3): 851–860.
  30. Kovinich N., Kayanja G., Chanoca A., Otegui M., Grotewold E. Abiotic stresses induce different localizations of anthocyanins in Arabidopsis. Plant Signal. Behav., 2015, 10(7): e1027850. https://doi.org/10.1080/15592324.2015.1027850
  31. Larue C., Korboulewsky N., Wang R., Mévy J.P. Depollution potential of three macrophytes: exudated, wall-bound and intracellular peroxidase activities plus intracellular phenol concentrations. Biores. Technol., 2010, 101(20): 7951–7957. https://doi.org/10.1016/j.biortech.2010.05.010 https://www.ncbi.nlm.nih.gov/pubmed/20570142
  32. Lavid N., Schwartz A., Yarden O., Tel-Or E. The involvement of polyphenols and peroxidase acitivities in heavy metal accumulation by epidermal glands of waterlily (Nymphaeceaea). Planta, 2001, 212(3): 323–331. https://doi.org/10.1007/s004250000400 https://www.ncbi.nlm.nih.gov/pubmed/11289596
  33. Liu H.W., He L.Y., Gao J.M., Ma Y.B., Zhang X.M., Peng H., Chen J.J. Chemical constituents from the aquatic weed Pistia stratiotes. Chem. Nat. Comp., 2008, 44(2): 236–238. https://doi.org/10.1007/s10600-008-9025-z
  34. Lodge D.M. Herbivory on freshwater macrophytes. Aquat. Bot., 1991, 41: 195–224. https://doi.org/10.1016/0304-3770(91)90044-6
  35. Lois R. Accumulation of UV-absorbing flavonoids induced by UV-B radiation in Arabidopsis thaliana L. in mechanisms of UV-resistance in Arabidopsis. Planta, 1994, 194: 498–503. https://doi.org/10.1007/BF00714462
  36. Madsen T.V., Sand-Jensen K. Photosynthetic carbon assimilation in aquatic macrophytes. Aquat. Bot., 1991, 41: 5–40. https://doi.org/10.1016/0304-3770(91)90037-6
  37. Markham K.R., Ryan K.G., Bloor S.J., Mitchell K.A. An increase in the luteolin:apigenin ratio in Marchantia polymorpha on UV-B enhancement. Phytochemistry, 1998, 48: 791–794. https://doi.org/10.1016/S0031-9422(97)00875-3
  38. Mane C.G., Joshi A.V., Saratale N.P. Phytoremediation potential of aquatic macrophyte Azolla caroliniana with references to zinc plating effluent. Emir. J. Food Agricult., 2012, 24(3): 208–223.
  39. Mues R. Species specific flavone glucuronides in Elodea species. Biochem. Syst. Ecol., 1983, 11: 261–265 https://doi.org/10.1016/0305-1978(83)90063-7
  40. Muzafarov E.N., Ivanov B.N., Mal'yan A.N., Zolotareva E.K. Dependence of flavonol functions on their chemical structure in chloroplast energy reactions. Biochem. Physiol. Pflanz., 1986, 181(6): 381–390. https://doi.org/10.1016/S0015-3796(86)80024-5
  41. Muzafarov E.N., Zolotareva E.K. Uncoupling effect of hydroxycinnamic acid derivatives on pea chloroplasts. Biochem. Physiol. Pflanz., 1989, 184(5–6): 363–369. https://doi.org/10.1016/S0015-3796(89)80030-7
  42. Newman R.M. Herbivory and detritivory on freshwater macrophytes by invertebrates: a review. J. North Amer. Benthol. Soc., 1991, 10: 89–114. https://doi.org/10.2307/1467571
  43. Parida A., Das A., Das P. NaCl stress causes changes in photosynthetic pigments, proteins and other metabolic components in the leaves of a true mangrove, Bruguira perviflora, in hydroponic cultures. J. Plant. Biol., 2002, 45: 38–36. https://doi.org/10.1007/BF03030429
  44. Perron N.R., Brumaghim J.L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys., 2009, 53(2): 75–100. https://doi.org/10.1007/s12013-009-9043-x https://www.ncbi.nlm.nih.gov/pubmed/19184542
  45. Pilon-Smits E. Phytoremediation. Annu. Rev. Plant Biol., 2005, 56: 15–39. https://doi.org/10.1146/annurev.arplant.56.032604.144214 https://www.ncbi.nlm.nih.gov/pubmed/15862088
  46. Podorvanov V.V., Polishchuk A.V., Zolotareva E.K. Effect of copper ions on the light-induced proton transfer in spinach chloroplasts. Biofizika, 2006, 52(6): 1049–1053.
  47. Polishchuk O.V., Vodka M.V., Belyavskaya N.A., Khomochkin A.P., Zolotareva E.K. The effect of acid rain on ultrastructure and functional parameters of photosynthetic apparatus in Pea leaves. Cell and Tissue Biol., 2016, 10(3): 250–257. https://doi.org/10.1134/S1990519X16030093
  48. Pollastri S., Tattini M. Flavonols: old compounds for old roles. Ann. Bot., 2011, mcr 234.
  49. Pourcel L., Routaboul J.M., Cheynier V., Lepiniec L., Debeaujon I. Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends Plant Sci., 2007, 12(1): 29–36. https://doi.org/10.1016/j.tplants.2006.11.006 https://www.ncbi.nlm.nih.gov/pubmed/17161643
  50. Rice-Evans C., Miller N., Paganga G. Antioxidant properties of phenolic compounds. Trends Plant Sci., 1997, 2(4): 152–159. https://doi.org/10.1016/S1360-1385(97)01018-2
  51. Ryan K.G., Ewald E.E., Swinny E., Markham K.R., Winefield C. Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochemistry, 2002, 59: 23–32. https://doi.org/10.1016/S0031-9422(01)00404-6
  52. Sandermann Jr.H. Higher plant metabolism of xenobiotics: the green liver concept. Pharmacogen. Genom., 1994, 4(5): 225–241. https://doi.org/10.1097/00008571-199410000-00001
  53. Singer A.C., Crowley D.E., Thompson I.P. Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol., 2003, 21(3): 123–130. https://doi.org/10.1016/S0167-7799(02)00041-0
  54. Sivaci A., Elmas E., Gumüş F., Sivaci E.R. Removal of cadmium by Myriophyllum heterophyllum Michx. and Potamogeton crispus L. and its effect on pigments and total phenolic compounds. Arch. Environ. Contam. Toxicol., 2008, 54(4): 612–618. https://doi.org/10.1007/s00244-007-9070-9 https://www.ncbi.nlm.nih.gov/pubmed/17973070
  55. Smolders A.J.P., Vergeer L.H.T., Van der Velde G., Roelofs J .G.M. Phenolic contents of submerged, emergent and floating leaves of aquatic and semi-aquatic macrophyte species: why do they differ? Oikos, 2010, 91(2): 307–310. https://doi.org/10.1034/j.1600-0706.2000.910211.x
  56. Stafford H.A. Flavonoid evolution: an enzymic approach. Plant Physiol., 1991, 96(3): 680–685. https://doi.org/10.1104/pp.96.3.680 https://www.ncbi.nlm.nih.gov/pubmed/16668242 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1080830
  57. Sukhorukov B.I. Montrel M.M., Opanasenko V.K., Zolotareva E.K. The interaction of DNA with protons of the medium by the buffer capacity. Method Mol. Biol., 1983, 17(5): 822–830.
  58. Vergeer L.H.T., Van der Velde G. Phenolic content of daylight-exposed and shaded floating leaves of water lilies (Nymphaeaceae) in relation to infection by fungi. Oecologia, 1997, 112: 481–484. https://doi.org/10.1007/s004420050335 https://www.ncbi.nlm.nih.gov/pubmed/28307624
  59. Wang C., Zhang S.H., Wang P.F., Hou J., Zhang W.J., Li W., Lin Z.P. The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere, 2009, 75: 1468–1476. https://doi.org/10.1016/j.chemosphere.2009.02.033 https://www.ncbi.nlm.nih.gov/pubmed/19328518
  60. Weisshaar B., Jenkins G.I. Phenylpropanoid biosynthesis and its regulation. Curr. Opin. Plant Biol., 1998, 1(3): 251–257. https://doi.org/10.1016/S1369-5266(98)80113-1
  61. Wilson K.E., Thompson J.E., Huner N.P.A., Greenberg B.M. Effects of ultraviolet-A exposure on ultraviolet-B induced accumulation of specific flavonoids in Brassica napus. Photochem. Photobiol., 2001, 73(6): 678–684. https://doi.org/10.1562/0031-8655(2001)073%3C0678:EOUAEO%3E2.0.CO;2
  62. Winkel-Shirley B. Biosynthesis of flavonoids and effects of stress. Curr. Opin. Plant Biol., 2002, 5(3): 218–223. https://doi.org/10.1016/S1369-5266(02)00256-X
  63. Wollenweber E., Stevens J.F., Dörr M., Rozefelds A.C. Taxonomic significance of flavonoid variation in temperate species of Nothofagus. Phytochemistry, 2003, 62: 1125–1131. https://doi.org/10.1016/S0031-9422(02)00666-0
  64. Zennie T.M., McClure J.W. The flavanoid chemistry of Pistia stratiotes L., and the origin of the Lemnaceae. Aquatic Bot., 1977, 3: 49–54. https://doi.org/10.1016/0304-3770(77)90003-1
  65. Zolotareva E.K. The effect of heavy metals on photosynthesis. Acta Physiol. Plantarum, 2007, 29(3): 31–40.