Ukr. Bot. J. 2016, 73(3): 290–297 https://doi.org/10.15407/ukrbotj73.03.290Plant Physiology, Biochemistry, Cell and Molecular Biology
Cofactor and structural role of CO2 in chloroplasts
Semenikhin A.V., Vodka M.V., Polishchuk O.V.- M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine
- 2, Tereshchenkivska Str., Kyiv, 01004, Ukraine
Abstract
The rate of photochemical reactions in chloroplasts of higher plants depends on the presence of inorganic carbon (Ci) – carbon dioxide and/or anions of carbonic acid in the medium. This relationship is known as the «bicarbonate effect» studied at the level of the intact leaf, isolated thylakoids, photosystems and reaction centers (RC) and is associated with the presence in the photosystem II (PSII) of tightly bound HCO3 -. The total amount of bound inorganic carbon is about 1 micromoles per mg of chlorophyll, but only one or two tightly bound to the RC molecules control PSII activity. The thylakoid membranes of chloroplasts also contain less tightly bound pool of bicarbonate (with a concentration close to the concentration of chlorophyll), which can be removed without significant consequences for the activity of PSII. The review summarizes data on the cofactor role of the tightly bound inorganic carbon, the removal of which completely inhibits the photochemical reactions in chloroplasts. It is assumed that weakly bound bicarbonate is involved in the proton transport and the regulation of phosphorylation. Interconversion of the Ci forms occurs in chloroplasts with participation of several carbonic anhydrases (CA). The suppression of their activity leads to a slowing of photochemical reactions and causes significant changes in the ultrastructural organization of the thylakoid membranes. These data indicate a structural role of Ci in the chloroplasts.
Keywords: carbon dioxide, bicarbonate, chloroplast, thylakoid membrane, photosynthesis, ultrastructure, carbonic anhydrase
Full text: PDF (Ukr) 633K
References
- Baranov S.V., Ananyev G.M., Klimov V.V., Dismukes G.C. Biochemistry, 2000, 39(29): 6060–6065. http://dx.doi.org/10.1021/bi992682c
- Blubaugh D.J., Govindjee S. Photosynth. Res., 1988, 19(1–2): 85–128. http://dx.doi.org/10.1007/BF00114571
- Bowden S.J., Hallahan B.J., Ruffle S.V., Evans M.C.W., Nugent J .H.A. Biochim. Biophys. Acta, 1991, 1060(1): 89–96.
- Fabre N., Reiter I.M., Becuwe-Linka N., Genty B., Rumeau D. Plant Cell Environ., 2007, 30: 617–629. http://dx.doi.org/10.1111/j.1365-3040.2007.01651.x
- Friso G., Giacomelli L., Ytterberg A.J., Peltier J.B., Rudella A., Sun Q., van Wijk K.J. Plant Cell., 2004, 16: 478–499. http://dx.doi.org/10.1105/tpc.017814
- Gutknecht J., Bisson M.A., Tosteson F.C. J. Gen. Physiol., 1977, 69(6): 779–794. http://dx.doi.org/10.1085/jgp.69.6.779
- Hermes S., Bremm O., Garczarek F., Derrien V., Liebisch P., Loja P., Sebban P., Gerwert K., Haumann M. Biochemistry, 2006, 45: 353–359. http://dx.doi.org/10.1021/bi0515725
- Hienerwadel R., Berthomieu C. Biochemistry, 1995, 34(50): 16288–16297. http://dx.doi.org/10.1021/bi00050a008
- Kiriziy D.A., Stasik O.O., Pryadkina G.A., Shadchina T.M. Assimilyatsiya CO2 i mekhanizmy ee regulyatsii, Kyiv: Logos, 2014, vol. 2, 478 pp.
- Klimov V.V., Hulsebosch R.J., Allakhverdiev S.I., Wincencjusz H., van Gorkom H.J., Hoff A.J. Biochemistry, 1997, 36(57): 16277–16281. http://dx.doi.org/10.1021/bi9717688
- Klimov V.V., Baranov S.V. Biochim. Biophys. Acta, 2001, 1508(2): 187–196. http://dx.doi.org/10.1016/S0005-2728(00)00222-X
- Koroidov S., Shevela D., Shutova T., Samuelsson G., Messinger J. Proc. Natl. Acad. Sci. USA, 2014, 111(17): 6299–6304. http://dx.doi.org/10.1073/pnas.1323277111
- Loerting T., Tautermann C.S., Kroemer R.T., Kohl I., Hallbrucker A., Mayer E., Liedl K.R. Angew. Chem. Int. Ed., 2000, 39(5): 891–894. http://dx.doi.org/10.1002/(SICI)1521-3773(20000303)39:5<891::AID-ANIE891>3.0.CO;2-E
- Muh F., Glockner C., Hellmich J., Zouni A. Biochim. Biophys. Acta, 2012, 1817: 44–65.
- Missner A., Kugler P., Saparov S.M., Sommer K., Mathai J.C., Zeidel M.L. J. Biol. Chem., 2008, 282: 25340–25347. http://dx.doi.org/10.1074/jbc.M800096200
- Onoyko E.B., Zolotareva E.K., Polishchuk A.V. Dop. NAN Ukrainy, 2010, 10: 160–165.
- Petrouleas V., Deligiannakis Y., Diner B.A. Biochim. Biophys. Acta, 1994, 1188(3): 271–277. http://dx.doi.org/10.1016/0005-2728(94)90045-0
- Podorvanov V.V., Chernoshtan A.A., Zolotareva E.K. Fiziologiya, Biokhimiya kulturnykh rasteniy, 2005, 37(4): 326–332.
- Podorvanov V.V., Chornoshtan A.A., Konovalyuk V.D. Dop. NAN Ukrainy, 2006, 9: 186–191.
- Polishchuk A.V., Vodka M.V., Belyavskaya N.A., Khomochkin A.P., Zolotareva E.K. Tsitologiya, 2016, 58(1): 52–59.
- Pronina N.A., Semenenko V.E. Algologia, 1991, 1: 80–92.
- Raven J.A. Plant Cell Environ., 1997, 20(2): 147–154. http://dx.doi.org/10.1046/j.1365-3040.1997.d01-67.x
- Raven J.A., Beardall J. J. Exp. Bot., 2015, 67(1): 1–13 http://dx.doi.org/10.1093/jxb/erv451
- Sedoud A., Kastner L., Cox N., El-Alaoui S., Kirilovsky D., Rutherford A.W. Biochim. Biophys. Acta, 2011, 1807: 216–226.
- Semenikhin A.V., Polishchuk A.V., Podorvanov V.V. Visnyk Kharkiv. natsion. ahrarn. un-tu. Ser. Biolohiya, 2013, 3(30): 23–31.
- Semenikhin, A.V., Zolotarova, O.K. Dop. NAN Ukrainy, 2014, 6: 151–155.
- Semenikhin A.V., Zolotareva E.K. Ukr. Biochem. J., 2015, 87(3): 47–56. http://dx.doi.org/10.15407/ubj87.03.047
- Semin B.K., Loviagina E.R., Aleksandrov A.Y., Kaurov Y.N., Novakova A.A. FEBS Lett., 1990, 400(2): 184–186. http://dx.doi.org/10.1016/0014-5793(90)81263-N
- Shevela D., Eaton-Rye J.J., Shen J.R, Govindjee. Biochim. Biophys. Acta, 2012, 1817(8): 1134–1151. http://dx.doi.org/10.1016/j.bbabio.2012.04.003
- Shutova T., Kenneweg H., Buchta J., Nikitina J., Terentyev V., Chernyshov S., Andersson B., Allakhverdiev S.I., Klimov V.V., Dau H., Junge W., Samuelsson G. EMBO J., 2008, 27(5): 782–791. http://dx.doi.org/10.1038/emboj.2008.12
- Stemler A., Govindjee S. Plant Physiol., 1973, 52(1): 119–123. http://dx.doi.org/10.1104/pp.52.2.119
- Stemler A., Govindjee S. Plant Cell Physiol., 1974, 15(2): 533–544.
- Stemler A.J. Photosynth. Res., 2002, 73(1–3): 177–183. http://dx.doi.org/10.1023/A:1020447030191
- Stemler A. Biochim. Biophys. Acta, 1977, 460(3): 511–522. http://dx.doi.org/10.1016/0005-2728(77)90089-5
- Ulas G., Olack G., Brudvig G.W. Biochemistry, 2008, 47(10): 3073–3075. http://dx.doi.org/10.1021/bi8000424
- Van Rensen J.J.S. Photosynth. Res., 2002, 73(2): 185–192. http://dx.doi.org/10.1023/A:1020451114262
- Van Rensen J.J., Tonk W.J.M., Bruijn S.M. FEBS Lett., 1988, 226(2): 347–351. http://dx.doi.org/10.1016/0014-5793(88)81452-2
- Vermaas W.F.J., Rutherford A.W. FEBS Lett., 1984, 175(3): 243–248. http://dx.doi.org/10.1016/0014-5793(84)80744-9
- Vilarejo A., Shutova T., Moskvin O., Forssun M., Klimov V.V., Samuelsson G. EMBO J., 2002, 21(4): 1930–1938. http://dx.doi.org/10.1093/emboj/21.8.1930
- Vodka M.V., Polishchuk A.V., Belyavskaya N.A., Zolotareva E.K. Visn. Kharkiv. natsion. agrarn. un-tu. Ser. Biologiya, 2013, 3(30): 46–55.
- Vodka M.V., Polishchuk O.V., Bilyavska N.O., Zolotarova O.K. Dop. NAN Ukrainy, 2013, 10: 152–158.
- Warburg O.W., Krippahl G.Z. Hill-Reaktionen, Z. Naturforsch, 1958, 13b(8): 509–514. http://dx.doi.org/10.1515/znb-1958-0805
- Yano J., Kern J., Sauer K., Latimer M.J., Pushkar Y., Biesiadka J., Loll B., Saenger W, Messinger J., Zouni A., Yachandra V.K. Science, 2006, 314(5800): 821–825. http://dx.doi.org/10.1126/science.1128186
- Yruela I., Allakhverdiev S.I., Ibarra J.V., Klimov V.V. FEBS Lett., 1998, 425(3): 396–400. http://dx.doi.org/10.1016/S0014-5793(98)00271-3
- Zharmukhamedov S.K., Shirshikova G.N., Maevskaya Z.V., Antropova T.M., Klimov V.V. Fiziol. rast., 2007, 54(3): 342–349.
- Zolotareva E.K. Fiziologiya, Biokhimiya kulturnykh rasteniy, 2010, 42(1): 37–50.
- Zolotareva E.K., Polishchuk O.V., Semenikhin A.V., Onoiko E.B. The Contribution of Light-Dependent Bicarbonate Uptake in Thylakoid Membrane Energization. In: Photosynthesis Research for Food, Fuel and the Future, Springer Berlin Heidelberg, 2013, pp. 197–201. http://dx.doi.org/10.1007/978-3-642-32034-7_41