ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 13 of 13
Up
Ukr. Bot. J. 2014, 71(5): 620–625
https://doi.org/10.15407/ukrbotj71.05.620
Plant Physiology, Biochemistry, Cell and Molecular Biology

Cell cycle regulators in Arabidopsis thaliana transgenic plants under clinorotation. Cyclin-depending kinases

O. Artemenko
Abstract

The main cell cycle regulators in plants, as in all eukaryotes, are cyclin and cyclin-depending kinases (CDK). They form active complex to initiate a cascade of reactions during cell cycle progression. In this article the generalized data about classification, properties of these proteins and their role in cell cycle regulation in the model plant Arabidopsis thaliana (L) Heynh. are presented. The following issues are emphasized: δ-cyclins genes (from D-class of cyclins), very important for cell progression across presyntetic phase of the cell cycle, which are responsible for cell transition from quiescence stage in DNA-synthesis phase (S) and can be regulated by exogenic factors; and CDK2, which combines this class of cyclins to form an active CDK-cyclin complex. Each cyclin is synthesized and degrades in the cell for specific period of the cycle and their expression fluctuates during a whole cell cycle [2], whereas CDKs is present in the cell all the time. Therefore, the study of CDK is necessary for understanding the fundamental cell cycle control mechanisms.

Keywords: cell cycle, cyclin-depending kinase, cell cycle regulation, cyclin, gene expression

Full text: PDF (Ukr) 0.96M

References
  1. Andrietta M.H., Eloy N.B., Hemerly A.S., Ferreira P.C.G. Genet. Mol. Biol., 2001, 24: 1—4. https://doi.org/10.1590/S1415-47572001000100010
  2. Artemenko O.A. Tsytologiya ta henetyka, 2006, 40(2): 36—41.
  3. Artemenko O.A. Ukr. botan. zhurn., 2001, 58(4): 415—421.
  4. Fuster J.J., Fernandez P., Gonzalez-Navarro H., Silvestre C., Abu Nabah Y. N., Andres V. Cardiovasc. Res., 2010, 86: 254—265. https://doi.org/10.1093/cvr/cvp363
  5. Gaudin V., Lunness P.A., Fobert P.R., Towers M., Riou-Khamlichi C., Murray J.A., Coen E., Doonan J.H. Plant Physiol., 2000, 122: 1137—1148. https://doi.org/10.1104/pp.122.4.1137
  6. Healy J.M., Menges M., Doonan J.H., Murray J.A. J. Biol. Chem., 2001, 276: 7041—7047. https://doi.org/10.1074/jbc.M009074200
  7. Knepper C., Savory E.A., Day B. Plant Physiol., 2011, 156(1): 286—300. https://doi.org/10.1104/pp.110.169656
  8. Kopnin B.P. Prakticheskaya onkologiya, 2002, 3(4): 229—235.
  9. Kordyum E.L. Int. Rev. Cytol., 1997, 171: 1—78. https://doi.org/10.1016/S0074-7696(08)62585-1
  10. Lipavska H., Maskova P., Vojvodova P. Ann. Bot., 2011, 107: 1071—1086. https://doi.org/10.1093/aob/mcr016
  11. Mews M., Moore R. Protoplasma, 2001, 216(3—4): 119—142.
  12. Morgan D.O. The cell cycle: principles of control, New science press. ISBN 978-0-9539181-2-6, 2007, 297 p.
  13. Oakenfull E.A., Riou-Khamlichi C., Murray J.A.H. Phil. Trans. Royal Soc. Lond., 2002, 357: 749—760. https://doi.org/10.1098/rstb.2002.1085
  14. Schnittger A., Schobinger U., Stierhof Y.D., Hulskamp M. Curr. Biol., 2012, 12: 415—420. https://doi.org/10.1016/S0960-9822(02)00693-0
  15. Shah M.A., Schwartz G.K. Clin. Cancer Res., 2001, 7: 2168— 2181.
  16. Sherr C.J., Roberts J.M. Genes Dev., 1999, 13(12): 1501—1512. https://doi.org/10.1101/gad.13.12.1501
  17. Van den Heuvel S., Harlow E. Science, 1994, 262: 2050—2054. https://doi.org/10.1126/science.8266103