ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 7 of 7
Up
Ukr. Bot. J. 2021, 78(6): 434–441
https://doi.org/10.15407/ukrbotj78.06.434
Cell Biology and Molecular Biology

Cytogenetic characteristics of seed progeny of old-aged trees of Pinus pallasiana and Picea abies (Pinaceae)

Ivan I. KORSHIKOV1,2, Yuliia O. BILONOZHKO3*, Volodymyr M. HRABOVYI4
Abstract

Information on cytogenetic changes in the seed offspring of old-aged trees is insufficient and inconsistent. In our studies, 150–200-year old trees of Picea abies and Pinus pallasiana were used. We analyzed peculiarities of their karyotype, nucleus-forming region, and nucleolus in the cells of seedlings of P. abies and P. pallasiana emerged from seeds in natural populations and plantations of introduced plants. As a result, age-dependent cytogenetic disorders were observed, such as the chromosome bridges, lag, premature segregation, and agglutination. Peculiarities with regard to number and structure of secondary chromosome constriction are demonstrated. The identified properties of the cell structure of seeds of old-aged trees of P. abies and P. pallasiana indicate that more resources are needed to maintain their protein synthesis at a normal level. The increased number of abnormalities indicates a significant impact of accumulated intracellular metabolites and cytopathological phenomena in mother plants on the quality of seed offspring.

Keywords: chromosomal aberrations, nuclear and nucleolar characteristics, old-aged trees, Picea abies, Pinus pallasiana

Full text: PDF (Eng) 458K

References
  1. Akinboro A., Mohammed K., Rathnasamy S., Muniandy V.R. 2011. Genotoxicity assessment of water samples from the Sungai Dua River in Pulau Pinang, Malaysia, using the Allium cepa test. Tropical Life Sciences Research, 22 (2): 23–35.
  2. Anisimova A.S., Alexandrov A.I., Makarova N.E., Gladyshev V.N., Dmitriev S.E. 2018. Protein synthesis and quality control in aging. Aging, 10: 4269–4288. https://doi.org/10.18632/aging.101721
  3. Arkhipchuk V.V. 1995. The use of the nucleolar characteristics in biotesting. Cytology and Genetics, 29(3): 6–12.
  4. Bochkov N.P., Demin N.V., Luchnik L.V. 1972. Classification and methods of registering of chromosome aberrations in somatic cells. Genetics, 8: 133–142.
  5. Bolognesi C., Lando C., Forni A. 1999. Chromosomal damage and ageing: effect on micronuclei frequency in peripheral blood lymphocytes. Ageing, 28: 393–397. https://doi.org/10.1093/ageing/28.4.393
  6. Bryant P.E. 1997. DNA damage, repair and chromosomal damage. International Journal of Radiation Biology, 71: 675–680. https://doi.org/10.1080/095530097143680
  7. Butorina A.K., Ermoloeva V.V., Cherkashina O.N. 2008. Prospects for the use of cytogenetic analysis in forestry on the example of assessing the state of island forests in the Voronezh Region. Advances in Modern Biology, 128: 400–408.
  8. Butorina A.K., Kalayev V.N., Karpova S.S. 2000. Influence of gender and age of children on the frequency of micronuclei occurrence in buccal epithelium of the oral cavity. Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy, 6: 143–145.
  9. Calderwood S.K., Murshid A., Prince T. 2009. The shock of aging: molecular chaperones and the heat shock response in longevity and aging – a mini review. Gerontology, 55: 550–558. https://doi.org/10.1159/000225957
  10. Cherkashina O.N. 2007. Cytogenetic monitoring of common pine plantings under the conditions of the Khrenovsky and Usman pine forests: Cand. Sci. Diss. Abstract. Voronezh, Voronezh State University, 22 pp.
  11. Gladyshev V.N. 2016. Aging: progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes. Aging Cell, 15: 594–602. https://doi.org/10.1111/acel.12480
  12. Glińska S., Bartczaka M., Oleksiaka S. 2007. Effects of anthocyanin-rich extract from red cabbage leaves on meristematic cells of Allium cepa L. roots treated with heavy metals. Ecotoxicology and Environmental Safety, 68: 343–350. https://doi.org/10.1016/j.ecoenv.2007.02.004
  13. Hein N., Sanij E., Quin J. 2012. The nucleolus and ribosomal genes in aging and senescence. Invited book chapter – Senescence Intech Open access Publisher, pp. 171–208. Available at: https://www.intechopen.com/chapters/30030. https://doi.org/10.5772/34581
  14. Isajev V., Lavadinović V., Lučić A., Rakonjac L. 2013. Serbian spruce (Picea omorica (Panc.) Purkyne) variability in the artificial populations in Serbia. Ekológia (Bratislava), 32: 277–282. https://doi.org/10.2478/eko-2013-0024
  15. Janssens G.E., Veenhoff L.M. 2016. The natural variation in lifespans of single yeast cells is related to variation in cell size, ribosomal protein, and division time. PLoS One, 11: e0167394. https://doi.org/10.1371/journal.pone.0167394
  16. Khaidarova T.G., Kalashnik N.A. 1999. Chromosome nucleolar organizers as adaptive elements of conifers. Cytology, 41(12): 1086–1089.
  17. Konnert M. 1991. Die Fichte (Picea abies (L.) Karst.) in Schwartzwald: genetische Variation und Korrelationen. Fortwissenschaftliches Centralblatt vereinigt mit Tharandter forstliches Jahrbuch [European Journal of Forest Research], 110: 84–94. https://doi.org/10.1007/BF02741242
  18. Korshikov I.I. 2010. Population genetics and reproductive biology of Crimean pine. Donetsk, 244 pp.
  19. Korshikov I., Belonozhko Yu., Lapteva H. 2019. Cytogenetic abnormalities in seed progenies of Pinus pallasiana D.Don stands from technogenic polluted lands in the steppe of Ukraine. Ekológia (Bratislava), 38: 117–125. https://doi.org/10.2478/eko-2019-0009
  20. Korshikov I.I., Mudrik E.A. 2006. Age-related dynamics of genetic variation in an isolated population of Cretaceous pine (Pinus sylvestris var. cretacea Kalenicz. ex Kom.) in the Donbass. Genetics, 42: 659–666. https://doi.org/10.1134/S1022795406050103
  21. Korshikov I.I., Tkachova Y.A., Privalikhin S.N. 2012. Cytogenetic abnormalities in Norway spruce (Picea abies (L.) Karst.) seedlings from natural populations and an introduction plantation. Cytology and Genetics, 46: 280–284. https://doi.org/10.3103/S0095452712050064
  22. Korshikov I.I., Lapteva Ye.V., Tkachova Yu.A. 2013. Variation in quantitative-dimensional characteristics of nucleoli and nuclei in seed cells of Pinus pallasiana D.Don (protected and human-disturbed areas in the steppe zone of Ukraine). Ukrainian Botanical Journal, 70(6): 805–812.
  23. Korshikov I.I., Pirko N.N., Mudrik E.A., Pirko Y.V. 2007. Maintenance of genetic structure in progenies of marginal mountainous and steppe populations of three species of Pinaceae Lindl. family in Ukraine. Silvae Genetica, 56: 1–10. https://doi.org/10.1515/sg-2007-0001
  24. Krysanov E.Yu., Ordzhonikidze K.G., Simanovsky S.A. 2018. Cytogenetic indicator in estimation of environmental state. Russian Journal of Developmental Biology, 49: 41–47. https://doi.org/10.1134/S1062360418010034
  25. Kvitko O.V., Muratova E.N. 2010. Karyological characteristics of Siberian fir (Abies sibirica Ledeb.) in Central Siberia. Cell Tissue Biology, 4: 215–222. https://doi.org/10.1134/S1990519X10020124
  26. Lempiainen H., Shore D. 2009. Growth control and ribosome biogenesis. Current Opinion in Cell Biology, 21: 855–863. https://doi.org/10.1016/j.ceb.2009.09.002
  27. Lewandowski A., Burczyk J., Meinartowicz L. 1991. Genetic structure and the mating system in an old stand of Polish larch. Silvae Genetica, 40: 75–79.
  28. López-Almansa J.C., Gil L. 2003. Empty samara and parthenocarpy in Ulmus minor s. l. Silvae Genetica, 52: 241–243.
  29. Mashkina O.S., Tikhonova I.V., Muratova E.N., Muray L.S. 2012. Cytogenetic features of seed progeny of dwarf pines in the south of Eastern Siberia. Khvoynyye boreal'noy zony, 30(1–2): 127–135.
  30. Mosgoeller W. 2004. Nucleolar ultrastructure in vertebrate. In: The Nucleolus. New York: Kluwer Acad., pp. 10–20.
  31. Muratova E.N. 1995. Nucleolus staining techniques for karyological analysis of conifers. Botanicheskiy Zhurnal, 80: 82–86.
  32. Nakamura K., Ishii Y., Takasu S., Nohmi T., Shibutani M., Ogawa K. 2021. Chromosome aberrations induced by the non-mutagenic carcinogen acetamide involve in rat hepatocarcinogenesis through micronucleus formation in hepatocytes. Archives of Toxicology, 95(8): 2851-2865. https://doi.org/10.1007/s00204-021-03099-9.
  33. Olson M.O., Hingorani K., Szebeni A. 2002. Conventional and nonconventional roles of the nucleolus. International Review of Cytology, 219: 199–266. https://doi.org/10.1016/s0074-7696(02)19014-0
  34. Pekol S., Baloğlu M.C., Altunoğlu Ya.C. 2016. Evaluation of genotoxic and cytologic effects of environmental stress in wheat species with different ploidy levels. Turkish Journal of Biology, 40: 580–588.
  35. Pimenov A.V., Sedelnikova T.S. 2006. Anomalies of mitosis in seedlings of Pinus sylvestris (Pinaceae) in the eutrophic swamp. Botanicheskiy Zhurnal, 91: 1537–1544.
  36. Richardson C., Moynahan M.E., Jasin M. 1998. Doublestrand break repair by interchromosomal recombinetion: suppression of chromosomal translocations. Genes & Development, 15: 3831–3842. https://doi.org/10.1101/gad.12.24.3831
  37. Schwarzacher H.G., Wachtler F. 1993. The nucleolus. Anatomy and Embryology, 188: 515–536. https://doi.org/10.1007/BF00187008
  38. Severine B., Westman B.J., Saskia H. 2010. The nucleolus under stress. Molecular Cell, 40: 216–227. https://doi.org/10.1016/j.molcel.2010.09.024
  39. Shafikova L.M., Kalashnik N.A. 2000. Characteristics of the karyotype of Scots pine in industrial pollution. Lesovedeniye, 2: 30–36.
  40. Singh R.J. 2017. Practical Manual on Plant Cytogenetics. Boca Raton, FL: CRC Press, 320 pp. https://doi.org/10.4324/9781351228268
  41. Stepinski D. 2014 Functional ultrastructure of the plant nucleolus. Protoplasma, 251: 1285–1306. https://doi.org/10.1007/s00709-014-0648-6
  42. Tigerstedt P.M.A., Rudin D., Niemela T., Tammisola J. 1982. Competition and neighbouring effect in a naturally regeneration populations of Scots pine. Silva Fennica, 16: 122–129.
  43. Tkachova Yu.O., Korshikov I.I. 2012. Polymorphism of nucleus-nucleolus parameters of Picea abies (L.) Karst (Pinaceae) seed progeny in the natural populations and in the introduction planting. Ukrainian Botanical Journal, 69(6): 919–925.
  44. Tremblay M., Simon J.P. 1989. Genetic structure of marginal populations of white spruce (Picea glauca) at its northern limit of distribution in Nouveau-Québec. Canadian Journal of Forest Research, 19: 1371–1379. https://doi.org/10.1139/x89-211
  45. Vostrikova T.V. 2007. Instability of cytogenetic indicators and instability of the genome in Betula pendula. Russian Journal of Ecology, 2: 88–92.
  46. Wang Q.L., Zhang L.T., Zou J.H. 2014. Effects of cadmium on root growth, cell division and micronuclei formation in root tip cells of Allium cepa var. agrogarum L. Phyton, 83: 291–298. https://doi.org/10.32604/phyton.2014.83.291
  47. Wojda A., Ziętkiewicz E., Mossakowska M., Pawłowski W., Skrzypczak K., Witt M. 2006. Correlation between the level of cytogenetic aberrations in cultured human lymphocytes and the age and gender of donors. Journal of Gerontology: Series A, 61: 763–772. https://doi.org/10.1093/gerona/61.8.763
  48. Zalapa J.E., Brunet J., Guries R.P. 2010. The extent of hybridization and its impact on the genetic diversity and population structure of an invasive tree, Ulmus pumila (Ulmaceae). Evolutionary Applications, 3: 157–168. https://doi.org/10.1111/j.1752-4571.2009.00106.x
  49. Zharskaya O.O., Zatsepina O.V. 2007. The dynamics and mechanisms of nucleolar reorganization during mitosis. Cell and Tissue Biology, 1: 277–292. https://doi.org/10.1134/S1990519X07040013