ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 4 of 6
Up
Ukr. Bot. J. 2021, 78(5): 347–359
https://doi.org/10.15407/ukrbotj78.05.347
Vegetation Science, Ecology, Conservation

The role of epigenetic regulation in adaptive phenotypic plasticity of plants

Kordyum E.L., Dubyna D.V.
Abstract

In recent decades, knowledge about the role of epigenetic regulation of gene expression in plant responses to external stimuli and in adaptation of plants to adverse environmental fluctuations have extended significantly. DNA methylation is considered as the main molecular mechanism that provides genomic information and contributes to the understanding of the molecular basis of phenotypic variations based on epigenetic modifications. Unfortunately, the vast majority of research in this area has been performed on the model species Arabidopsis thaliana. The development of the methylation-sensitive amplified polymorphism (MSAP) method has made it possible to implement the large-scale detection of DNA methylation alterations in wild non-model and agricultural plants with large and highly repetitive genomes in natural and manipulated habitats. The article presents current information on DNA methylation in species of natural communities and crops and its importance in plant development and adaptive phenotypic plasticity, along with brief reviews of current ideas about adaptive phenotypic plasticity and epigenetic regulation of gene expression. The great potential of further studies of the epigenetic role in phenotypic plasticity of a wide range of non-model species in natural populations and agrocenoses for understanding the molecular mechanisms of plant existence in the changing environment in onto- and phylogeny, directly related to the key tasks of forecasting the effects of global warming and crop selection, is emphasized. Specific taxa of the Ukrainian flora, which, in authors’ opinion, are promising and interesting for this type of research, are recommended.

Keywords: adaptation, DNA methylation, epigenetic regulation, phenotypic plasticity

Full text: PDF (Ukr) 2.26M

References
  1. Abakumova M., Zobel K., Lepik A., Semchenko M. 2016. Plasticity in plant functional traits is shaped by variability in neighbourhood species composition. New Phytologist, 211(2): 455–463. https://doi.org/10.1111/nph.13935
  2. Abid G., Mingeot D., Muhovski Y., Mergeai G., Aouida M., Abdelkarim S., Aroua I., El Ayed M., Mhamdi M., Sassi K., Jebara M. 2017. Analysis of DNA methylation patterns associated with drought stress response in faba bean (Vicia faba L.) using methylation-sensitive amplification polymorphism (MSAP). Environmental and Experimental Botany, 142: 34–44. https://doi.org/10.1016/j.envexpbot.2017.08.004
  3. Ashapkin V.V., Kutueva L.I., Vaniushin B.F. 2016. Epigenetic variability in plants: heritability, adaptability, evolutionary value. Russian Journal of Plant Physiology, 63(2): 191–204. https://doi.org/10.1134/S1021443716020059
  4. Aubin-North N., Renn C.P. 2009. Genomic reaction norms: using integrative biology to understand molecular mechanisms of phenotypic plasticity. Molecular Ecology, 18(18): 3763–3780. https://doi.org/10.1111/j.1365-294X.2009.04313.x
  5. Bradshow A.D. 1965. Evolutionary significance of phenotypic plasticity in plants. Advances in Genetics, 13: 115–155. https://doi.org/10.1016/S0065-2660(08)60048-6
  6. Brautigam K., Vining K.J., Lafon-Placette C., Fossdal C.G., Mirouze M., Marcos J.G., Fluch S., Fraga M.F., Guevara A., Abarca D., Johnsen Ø., Maury S., Strauss S.H., Campbell M.M., Rohde A., Diaz-Sala C., Cervera M.-T. 2013. Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecology and Evolution, 3(2): 399–415. https://doi.org/10.1002/ece3.461
  7. Cervera M.T., Ruiz-García L., Martínez-Zapater J.M. 2003. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Molecular Genetics and Genomics. 268(4): 543–552. https://doi.org/10.1007/s00438-002-0772-4
  8. Chinnusamy V., Zhu J.-K. 2009. Epigenetic regulation of stress responses in plants. Current Opinion in Plant Biology, 12: 1–7. https://doi.org/10.1016/j.pbi.2008.12.006
  9. Chwialkowska K., Korotko U., Kwasniewski M. 2019. DNA Methylation analysis in barley and other species with large genomes. Methods in Molecular Biology, 1900: 253–268. https://doi.org/10.1007/978-1-4939-8944-7_16
  10. Chwialkowska K., Korotko U., Kosinska J., Szarejko I. 2017. Methylation sensitive amplification polymorphism sequencing (MSAP-Seq) – a method for high-throughput analysis of differentially methylated CCGG sites in plants with large genomes. Frontiers in Plant Science, 8: 2056. https://doi.org/10.3389/fpls.2017.02056
  11. Chwialkowska K., Nowakowska U., Mroziewicz A., Szarejko I., Kwasniewski M. 2016. Water-deficiency conditions differently modulate the methylome of roots and leaves in barley (Hordeum vulgare L.). Journal of Experimental Botany, 67: 1109–1121. https://doi.org/10.1093/jxb/erv552
  12. Cubas P., Vincent C., Coen E. 1999. An epigenetic mutation responsible for natural variation in floral symmetry. Nature, 401: 157–161. https://doi.org/10.1038/43657
  13. Dowen R.H., Pelizzola M., Schmitz R.J., Lister R., Dowen J.M., Nery J.R., Dixon J.E., Ecker J.R. 2012. Widespread dynamic DNA methylation in response to biotic stress. Proceedings of the National Academy of Sciences, 109(32): 2183–2191. https://doi.org/10.1073/pnas.1209329109
  14. Dubyna D.V., Kordyum E.L. 2015. Visnyk NAN Ukrainy, 7: 32–39. https://doi.org/10.15407/visn2015.07.032
  15. Eriksson M.C., Szukala A., Tian B., Paun O. 2020. Current research frontiers in plant epigenetics: an introduction to a Virtual Issue. New Phytologist, 226(2): 285–288. https://doi.org/10.1111/nph.16493
  16. Fang J., Song C., Zheng Y., Qiao Y., Zhang Z., Dong Q., Chao C.T. 2008.Variation in cytosine methylation in Clementine mandarin cultivars. Journal of Horticultural Science and Biotechnology, 83: 833–839. https://doi.org/10.1080/14620316.2008.11512469
  17. Gao L., Geng Y., Li B., Chen J., Yang J. 2010. Genomewide DNA methylation alterations of Alternanthera philoxeroides in natural and manipulated habitats: implications for epigenetic regulation of rapid responses to environmental fluctuation and phenotypic variation. Plant, Cell & Environment. 33: 1820–1827. https://doi.org/10.1111/j.1365-3040.2010.02186.x
  18. Geng Y., Chang Na, ZhaoY., QinX., Lu S., Crabbe M.J.S., Guan Y., Zhang T. 2020. Increased epigenetic diversity and transient epigenetic memory in response to salinity stress in Thlaspi arvense. Ecology and Evolution, 10(2): 11622–11630. https://doi.org/10.1002/ece3.6795
  19. González R.M., Ricardi M.M., Iusem N.D. 2013. Epigenetic marks in an adaptive water stress-responsive gene in tomato roots under normal and drought conditions. Epigenetic, 8(8): 864–872. https://doi.org/10.4161/epi.25524
  20. Grant-Downton R.T., Dickinson H.G. 2005. Epigenetics and its implications for plant biology. 1. The epigenetic network in plants. Annals of Botany, 96: 1143–1164. https://doi.org/10.1093/aob/mci273
  21. Guarino F., Cicatelli A., Brundu G., Improta G., Triassi M., Castiglione S. 2019. The use of MSAP reveals epigenetic diversity of the invasive clonal populations of Arundo donax L. PLoS ONE, 14: e0215096. https://doi.org/10.1371/journal.pone.0215096
  22. Guarino F., Heinze B., Castiglione S., Cicatelli A. 2020. Epigenetic analysis through MSAP-NGS coupled technology: the case study of white poplar monoclonal populations/stands. International Journal of Molecular Sciences, 21(19): 73–93. https://doi.org/10.3390/ijms21197393
  23. Herman J.J., Sultan S.E. 2016. DNA methylation mediates genetic variation for adaptive transgenerational plasticity. Proceedings of the Royal Society. B: Biological Sciences, 283: 0160988. http://dx.doi.org/10.1098/rspb.2016.0988
  24. Herrera C.M., Bazaga P. 2008. Population-genomic approach reveals adaptive floral divergence in discrete populations of a hawk moth-pollinated violet. Molecular Ecology, 24: 5378–5390. https://doi.org/10.1111/j.1365-294X.2008.04004.x
  25. Herrera C.M., Bazaga P. 2010. Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. New Phytologist, 187: 867–876. https://doi.org/10.1111/j.1469-8137.2010.03298.x
  26. Herrera C.M., Bazaga P. 2013. Epigenetic correlates of plant phenotypic plasticity: DNA methylation differs between prickly and nonprickly leaves in heterophyllous Ilex aquifolium (Aquifoliaceae) trees. Botanical Journal of the Linnean Society, 171: 441–452. https://doi.org/10.1111/boj.12007
  27. Jacobsen S.E., Meyerowitz E.M. 1997. Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science, 277: 1100–1103. https://doi.org/10.1126/science.277.5329.1100
  28. Jiang C., Mithani A., Belfield E.J., Mott R., Hurst L.D., Harberd N.P. 2014. Environmentally responsive genomewide accumulation of de novo Arabidopsis thaliana mutations and epimutations. Genome Research, 24(11): 1821–1829. https://doi.org/10.1101/gr.177659.114
  29. Kelly S.A., Panhuis T.M., Stoehr A.M. 2012. Phenotypic plasticity: molecular mechanisms and adaptive significance. Comprehensive Physiology, 2: 1417–1439. https://doi.org/10.1002/cphy.c110008
  30. Kinoshita T., Seki M. 2014. Epigenetic memory for stress response and adaptation in plants. Plant and Cell Physiology, 55: 1859–1863. https://doi.org/10.1093/pcp/pcu125
  31. Köhler C., Springer N. 2017. Plant epigenomics – deciphering the mechanisms of epigenetic inheritance and plasticity in plants. Genome Biology, 18: 132. https://doi.org/10.1186/s13059-017-1260-9
  32. Kooke R., Johannes F., Wardenaar R., Becker F.F.M., Etcheverry M., Colot V., Vreugdenhil D., Keurentjes J.J.B. 2015. Epigenetic basis of morphological variation and phenotypic plasticity in Arabidopsis thaliana. The Plant Cell, 27(2): 337–348. https://doi.org/10.1105/tpc.114.133025
  33. Kordyum E.L. 2012. Ukrainian Botanical Journal, 69(2): 163–177.
  34. Kordyum E.L., Dubyna D.V. 2019. Phenotypic plasticity in plant adaptation and coexistence. International Journal of Advanced Research in Science, 5: 8–13. https://doi.org/10.20431/2455-4316.0503002
  35. Kordyum E.L., Sytnik K.M., Baranenko V.V., Belyavskaya N.A., Klimchuk D.A., Nedukha E.M. 2003. Kletochnye mekhanizmy adaptatsii rasteniy k neblagopriyatnym vozdeystviyam ekologicheskikh faktorov v estestvennykh usloviyakh. Kyiv: Naukova Dumka, 277 pp.
  36. Kroon de H., Huber H., Stuefer J.F., Groenendael van J.M. 2005. A modular concept of phenotypic plasticity in plants. New Phytologist, 166: 73–82. https://doi.org/10.1111/j.1469-8137.2004.01310.x
  37. Kuiper P.J.C. 1998. Adaptation mechanisms of green plants to environmental stress. Annals of the New York Academy of Sciences, 851: 209–215. https://doi.org/10.1111/j.1749-6632.1998.tb08995.x
  38. Kumar S., Mohapatra T. 2021. Dynamics of DNA methylation and its functions in plant growth and development. Frontiers in Plant Science, 12: 596236. https://doi.org/10.3389/fpls.2021.596236
  39. Lachmann M., Jablonka E. 1996. The inheritance of phenotypes: an adaptation to fluctuating environments. Journal of Theoretical Biology, 181: 1–9. https://doi.org/10.1006/jtbi.1996.0109
  40. Latzel V., Rendina-González A.P., Rosenthal J. 2016. Epigenetic memory as a basis for intelligent behavior in clonal plants. Frontiers in Plant Science, 7: 1354. https://doi.org/10.3389/fpls.2016.01354
  41. Lebedeva M.A., Tvorogova V.E., Tikhodeev O.N. 2017. Genetika, 53(10): 1115–1131. https://doi.org/10.7868/S0016675817090089
  42. Li Y.D., Shan X.H., Liu X.M., Hu L.J., Guo W.L., Liu B. 2008. Utility of the methylation-sensitive amplified polymorphism (MSAP) marker for detection of DNA methylation polymorphism and epigenetic population structure in a wild barley species (Hordeum brevisubulatum). Ecological Research, 23: 927–930. https://doi.org/10.1007/s11284-007-0459-8
  43. Lira-Medeiros C.F., Parisod C., Fernandes R.A., Mata C.S., Cardoso M.A., Ferreira P.C.G. 2010. Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS ONE, 5(4): e10326. https://doi.org/10.1371/journal.pone.0010326
  44. Meyer P. 2015. Epigenetic variation and environmental change. Journal of Experimental Botany, 66: 3541–3548. https://doi.org/10.1093/jxb/eru502
  45. Miner B.G., Sultan S.E., Morgan S.G., Padilla D.K., Relyea R.A. 2005. Ecological consequences of phenotypic plasticity. Trends in Ecology & Evolution, 20: 686–692. https://doi.org/10.1016/j.tree.2005.08.002
  46. Miryeganeh M., Saze H. 2020. Epigenetic inheritance and plant evolution. Population Ecology, 62 (1): 17–27. https://doi.org/10.1002/1438-390X.12018
  47. Mizutani M., Kanaoka M.M. 2018. Environmental sensing and morphological plasticity in plants. Seminars in Cell and Developmental Biology, 83: 69–77. https://doi.org/10.1016/j.semcdb.2017.10.029
  48. Paun O., Bateman R.M., Fay M.F., Hedren M., Civeyrel L., Chase M.W. 2010. Stable epigenetic effects impact adaptation in allopolyploid orchids (Dactylorhiza: Orchidaceae) research article. Molecular Biology and Evolution, 27: 2465–2473. https://doi.org/10.1093/molbev/msq150
  49. Peng H., Zhang J. 2009. Plant genomic DNA methylation in response to stresses: potential applications and challenges in plant breeding. Progress in Natural Science, 19: 1037–1045. https://doi.org/10.1016/j.pnsc.2008.10.014
  50. Pigliucci M. 2005. Evolution of phenotypic plasticity: where are we going now? Trends in Ecology & Evolution, 20: 481–486. https://doi.org/10.1016/j.tree.2005.06.001
  51. Reyna-López G.A., Simpson J., Ruiz-Herrera J. 1997. Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Molecular Genetics and Genomics, 253: 703–710. https://doi.org/10.1007/s004380050374
  52. Richards C.L., Schrey A.W., Pigliucci M. 2012. Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecology Letters, 15(9): 1016–1025. https://doi.org/10.1111/j.1461-0248.2012.01824.x
  53. Richards C.L., Alonso C., Becker C., Bossdorf O., Bucher E., Colomé-Tatché M., Durka W., Engelhardt J., Gaspar B., Gogol-Döring A., Grosse I., Gurp van T.P., Heer K., Kronholm I., Lampei C., Latzel V., Mirouze M., Opgenoorth L., Paun O., Prohaska S.J., Rensing S.A., Stadler P.F., Trucchi E., Ullrich K., Verhoeven K.J.F. 2017. Ecological plant epigenetics: evidence from model and non-model species, and the way forward. Ecology Letters, 20(12): 1576–1590. https://doi.org/10.1111/ele.12858
  54. Riddle N.C., Richards E.J. 2002. The control of natural variation in cytosine methylation in Arabidopsis. Genetics, 162: 355–363.
  55. Sáez-Laguna E., Guevara M.-Á., Díaz L.-M., Sánchez-Gómez D., Collada C., Aranda I., Cervera M.T. 2014. Epigenetic variability in the genetically uniform forest tree species Pinus pinea L. PLoS ONE, 9(8): e103145. https://doi.org/10.1371/journal.pone.0103145
  56. Salmon A., Clotault J., Jenczewski E., Chable V., Manzanares-Dauleux M.J. 2008. Brassica oleracea displays a high level of DNA methylation polymorphism. Plant Science, 174: 61–70. https://doi.org/10.1016/j.plantsci.2007.09.012
  57. Saze H., Scheid O.M., Paszkowski J. 2003. Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nature Genetics, 34: 65–69. https://doi.org/10.1038/ng1138
  58. Schlichting C.D., Smith H. 2002. Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes. Evolutionary Ecology, 16: 189–211. https://doi.org/10.1023/A:1019624425971
  59. Schneider R.F., Meyer A. 2017. How plasticity, genetic assimilation and cryptic genetic variation may contribute to adaptive radiations. Molecular Ecology, 26(1): 330–350. https://doi.org/10.1111/mec.13880
  60. Schrey A.W., Alvarez M., Foust C.M., Kilvitis H.J., Lee J.D., Liebl A.L., Martin L.B., Richards C.L., Robertson M. 2013. Ecological epigenetics: beyond MS-AFLP. Integrative and Comparative Biology, 53(2): 340–350. https://doi.org/10.1093/icb/ict012
  61. Schulz B., Eckstein R.L., Durka W. 2013. Scoring and analysis of methylation-sensitive amplification polymorphisms for epigenetic population studies. Molecular Ecology Resources, 13: 642–653. https://doi.org/10.1111/1755-0998.12100
  62. Schulz B., Eckstein R.L., Durka W. 2014. Epigenetic variation reflects dynamic habitat conditions in a rare floodplain herb. Molecular Ecology, 23: 3523–3537. https://doi.org/10.1111/mec.12835
  63. Singer M., Berg P. 1991. Genes & Genomes, a changing perspective. Mill Valley, California: University Science Books, 929 pp.
  64. Sultan S.E. 2000. Phenotypic plasticity for plant development, function and life history. Trends in Plant Science, 5(12): 537–542. https://doi.org/10.1016/S1360-1385(00)01797-0
  65. Sultan S.E. 2003. Phenotypic plasticity in plants: a case study in ecological development. Evolution & Development, 5: 25–33. https://doi.org/10.1046/j.1525-142X.2003.03005.x
  66. Thiebaut F., Hemerly A.S, Ferreira P.C.G. 2019. A role for epigenetic regulation in the adaptation and stress responses of non-model plants. Frontiers in Plant Science. 10: 246. https://doi.org/10.3389/fpls.2019.00246
  67. Tomilin N.V. 2009. Tsitologiya, 51: 291–296.
  68. Trucchi E., Mazzarella A.B., Gilfillan G.D., Lorenzo M.T. 2016. BsRADseq: screening DNA methylation in natural populations of non-model species. Molecular Ecology, 25: 1697–1713. https://doi.org/10.1111/mec.13550
  69. Vaughn M.W., Tanurdzić M., Lippman Z., Jiang H., Carrasquillo R., Rabinowicz P.D., Dedhia N., McCombie W.R., Agier N., Bulski A., Colot V., Doerge R.W., Martienssen R.A. 2007. Epigenetic natural variation in Arabidopsis thaliana. PLoS Biology, 5: 1617–1629. https://doi.org/10.1371/journal.pbio.0050174
  70. Verhoeven K.J., van Gurp T.P. 2012. Transgenerational effects of stress exposure on offspring phenotypes in apomictic dandelion. PLoS ONE, 7(6): e38605. https://doi.org/10.1371/journal.pone.0038605
  71. Verhoeven K.J., Jansen J.J., van Dijk P.J., Biere A. 2010. Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytologist, 185: 1108–1118. https://doi.org/10.1111/j.1469-8137.2009.03121.x
  72. Verhoeven K.J., Preite V. 2014. Epigenetic variation in asexually reproducing organisms. Evolution, 68: 644–655. https://doi.org/10.1111/evo.12320
  73. Waddington C.H. 2012. The Epigenotype. International Journal of Epidemiology, 41(1): 10–13. https://doi.org/10.1093/ije/dyr184
  74. Wang W.S., Pan Y.J., Zhao X.Q., Dwivedi D., Zhu L.H., Ali J., Fu B.Y., Zhi-Kang L. 2011. Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). Journal of Experimental Botany, 62: 1951–1960. https://doi.org/10.1093/jxb/erq391
  75. Wen-Feng N. 2021. DNA methylation: from model plants to vegetable crops. Biochemical Society Transactions, 49(3): 1479–1487. https://doi.org/10.1042/BST20210353
  76. Xiong L.Z., Xu C.G., Maroof M.A.S. 1999. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplication polymorphism technique. Molecular Genetics and Genomics, 261: 439–446. https://doi.org/10.1007/s004380050986
  77. Zhang X. 2008. The epigenetic landscape of plants. Science, 320: 489. https://doi.org/10.1126/science.1153996
  78. Zhang H., Lang Z., Zhu J.-K. 2018. Dynamics and function of DNA methylation in plants. Molecular Cell Biology, 19: 489–506. https://doi.org/10.1038/s41580-018-0016-z
  79. Zhang X., Yazaki J., Sundaresan A., Cokus S., Chan S.W., Chen H., Henderson I.R., Shinn P., Pellegrini M., Jacobsen S.E., Ecker J.R. 2006. Genome-wide highresolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell, 126: 1189–1201. https://doi.org/10.1016/j.cell.2006.08.003
  80. Zhong X., Wang Y., Liu X., Gong L., Ma Y., Qi B., Dong Y., Liu B. 2009. DNA methylation polymorphism in annual wild soybean (Glycine soja Sieb. et Zucc.) and cultivated soybean (G. max L. Merr.). Canadian Journal of Plant Science, 89: 851–863. https://doi.org/10.4141/CJPS08215
  81. Zilberman D., Henikoff S. 2005. Epigenetic inheritance in Arabidopsis: selective silence. Current Opinion in Genetics and Development. 15(5): 557–562. https://doi.org/10.1016/j.gde.2005.07.002