ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 7 of 7
Up
Ukr. Bot. J. 2020, 77(6): 480–494
https://doi.org/10.15407/ukrbotj77.06.480
Cell Biology and Molecular Biology

Protein bodies of the endoplasmic reticulum in Arabidopsis thaliana (Brassicaceae): origin, structural and biochemical features, functional significance

Romanchuk S.M.
Abstract

History of the discovery, formation, structural and biochemical traits of the protein bodies, derivatives of the granular endoplasmic reticulum (GER) that are known as ER-bodies, are reviewed. The functions of ER-bodies in cell vital activity mainly in Arabidopsis thaliana are reported. The highly specific component of ER-bodies, β-glucosidase enzyme, is described and its protecting role for plants under effect of abiotic and biotic factors is characterized. Based on the analytical review of the literature, it is shown that ER-bodies and the transcription factor NAI2 are unique to species of the family Brassicaceae. The specificity of the system GER – ER-bodies for Brassicaceae and thus the fundamental and applied importance of future research of mechanisms of its functioning in A. thaliana and other Brassicaceae species are emphasized.

Keywords: Brassicaceae, Brassicales, β-glucosidase, cell defenses, ER-bodies, NAI2, PYK10

Full text: PDF (Ukr) 3.11M

References
  1. Adie B.A.T., Pérez-Pérez J., Pérez-Pérez M.M., Godoy M., Sánchez-Serrano J.-J., Schmelz E.A., Solano R. 2007. ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. The Plant Cell, 19(5): 1665–1681. https://doi.org/10.1105/tpc.106.048041
  2. Angelos E., Ruberti C., Kim S.J., Brandizzi F. 2017. Maintaining the factory: the roles of the unfolded protein response in cellular homeostasis in plants. Plant Journal for Cell and Molecular Biology, 90(4): 671–682. https://doi.org/10.1111/tpj.13449
  3. Balla T., Kim Y.J., Alvarez-Prats A., Pemberton J. 2019. Lipid dynamics at contact sites between the endoplasmic reticulum and other organelles. Annual Review of Cell and Developmental Biology, 35: 85–109. https://doi.org/10.1146/annurev-cellbio-100818-125251
  4. Behnke H.-D., Eschlbeck G. 1978. Dilated cisternae in Capparales – an attempt towards the characterization of a specific endoplasmic reticulum. Protoplasma, 97: 351–363. https://doi.org/10.1007/BF01276292
  5. Bednarek P., Pislewska-Bednarek M., Svatos A., Schneider B., Doubsky J., Mansurova M., Humphry M., Consonni C., Panstruga R., Sanchez-Vallet A., Molina A., Schulze-Lefert P. 2009. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science, 323(5910): 101–106. https://doi.org/10.1126/science.1163732
  6. Bones A.M., Iversen T.-H. 1985. Myrosin cells and myrosinase. Israel Journal of Botany, 34(2): 351–376.
  7. Bones A.M., Evjen K., Iversen T.-H. 1989. Characterization and distribution of dilated cisternae of the endoplasmic reticulum in intact plants, protoplasts, and calli of Brassicaceae. Israel Journal of Plant Sciences, 38: 177–192.
  8. Bonnett H.T.J., Newcomb E.H. 1965. Polyribosomes and cisternal accumulations in root cells of radish. The Journal of Cell Biology, 27(2): 423–432. https://doi.org/10.1083/jcb.27.2.423
  9. Borek V., Elberson L.R., McCaffrey J.P., Morra M.J. 1997. Toxicity of rapeseed meal and methyl isothiocyanate to larvae of the black vine weevil (Coleoptera: Curculionidae). Journal of Economic Entomology, 90(1): 109–112. https://doi.org/10.1093/jee/90.1.109
  10. Brown P.D., Tokuhisa J.G., Reichelt M., Gershenzon J. 2003. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry, 62(3): 471–481. https://doi.org/10.1016/s0031-9422(02)00549-6
  11. Bulavin I.V. 2017. Peculiarities of root morphogenesis of Arabidopsis thaliana (L.) Heynh. in vitro culture under clinorotation: Cand. Sci. Diss. Abstract. Kyiv, Institute of Food Biotechnology and Genomics NAS of Ukraine, 20 pp.
  12. Buvat R. 1963. Electron microscopy of plant protoplasm. International Review of Cytology, 14: 41–155. https://doi.org/10.1016/S0074-7696(08)60021-2
  13. Denecke J., De Rycke R., Botterman J. 1992. Plant and mammalian sorting signals for protein retention in the endoplasmic reticulum contain a conserved epitope. The EMBO Journal, 11(6): 2345–2355. https://doi.org/10.1002/j.1460-2075.1992.tb05294.x
  14. Dunkley T.P., Hester S., Shadforth I.P., Runions J., Weimar T., Hanton S.L., Griffin J.L., Bessant C., Brandizzi F., Hawes C., Watson R.B., Dupree P., Lilley K.S. 2006. Mapping the Arabidopsis organelle proteome. Proceedings of the National Academy of Sciences of the United States of America, 103(17): 6518–6523. https://doi.org/10.1073/pnas.0506958103
  15. Esau K. 1975. Dilated endoplasmic reticulum cisternae in differentiating xylem of minor veins of Mimosa pudica L. leaf. Annals of Botany, 39(2): 167–174. https://doi.org/10.1093/oxfordjournals.aob.a084926
  16. Esen A. 2003. β-Glucosidases. In: Handbook of food enzymology. Eds J.R. Whitaker, A.G.J. Voragen, D.W.S. Wong. New York: Marcel Dekker Inc., pp. 791–804.
  17. Falk K.L., Kästner J., Bodenhausen N., Schramm K., Paetz C., Vassão D.G., Reichelt M., Von Knorre D., Bergelson J., Erb M., Gershenzon J., Meldau S.2014. The role of glucosinolates and the jasmonic acid pathway in resistance of Arabidopsis thaliana against molluscan herbivores. Molecular Ecology, 23(5): 1188–1203. https://doi.org/10.1093/10.1111/mec.12610
  18. Faso C., Chen Y.N., Tamura K., Held M., Zemelis S., Marti L., Saravanan R., Hummel E., Kung L., Miller E., Hawes C., Brandizzi F. 2009. A missense mutation in the Arabidopsis COPII coat protein Sec24A induces the formation of clusters of the endoplasmic reticulum and Golgi apparatus. The Plant Cell, 21(11): 3655–3671. https://doi.org/10.1105/tpc.109.068262
  19. Fernandez D.E., Staehelin L.A. 1987. Does gibberellic acid induce the transfer of lipase from protein bodies to lipid bodies in barley eleurone cells? Plant Physiology, 85(2): 487–496. https://doi.org/10.1104/pp.85.2.487
  20. Fourcroy P., Siso-Terraza P., Sudre D., Saviron M., Reyt G., Gaymard F., Abadia A., Abadia J., Alvarez-Fernandez A., Briat J.F. 2014. Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. The New Phytologist, 201(1): 155–167. https://doi.org/10.1111/nph.12471
  21. Frerigmann H., Piślewska-Bednarek M., Sánchez-Vallet A., Molina A., Glawischnig E., Gigolashvili T., Bednarek P. 2016. Regulation of pathogen-triggered tryptophan metabolism in Arabidopsis thaliana by MYB transcription factors and indole glucosinolate conversion products. Molecular Plant, 9(5): 682–695. https://doi.org/10.1016/j.molp.2016.01.006
  22. Fuchs R., Kopischke M., Klapprodt C., Hause G., Meyer A.J., Schwarzlander M., Fricker M.D., Lipka V. 2016. Immobilized subpopulations of leaf epidermal mitochondria mediate PEN2-dependent pathogen entry control in Arabidopsis. The Plant Cell, 28(1): 130–145. https://doi.org/10.1105/tpc.15.00887
  23. Gailhofer M., Thaler I., Rücker W. 1979. Dilated ER in callus cells and in cells from Armoracia plants cultivated in vitro. Protoplasma, 98: 263–274. https://doi.org/10.1007/BF01281443
  24. Gallardo K., Job C., Groot S.P.C., Puype M., Demol H., Vandekerckhove J., Job D. 2001. Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiology, 126: 838–848. https://doi.org/10.1104/pp.126.2.835
  25. Geem K.R., Kim D.H., Lee D.W., Kwon Y., Lee J., Kim J.H., Hwang I. 2019. Jasmonic acid-inducible TSA1 facilitates ER body formation. Plant Journal for Cell and Molecular Biology, 97(2): 267–280. https://doi.org/10.1111/tpj.14112
  26. Gunning B.E.S. 1998. The identity of mystery organelles in Arabidopsis expressing GFP. Trends in Plant Science, 3(11): 417. https://doi.org/10.1016/S1360-1385(98)01336-3
  27. Hakenjos J.P., Bejai S., Ranftl Q., Behringer C., Vlot A.C., Absmanner B., Hammes U., Heinzlmeir S., Kuster B., Schwechheimer C. 2013. ML3 is a NEDD8- and ubiquitinmodified protein. Plant Physiology, 163(1): 135–149. https://doi.org/10.1104/pp.113.221341
  28. Halkier B.A., Gershenzon J. 2006. Biology and biochemistry of glucosinolates. Annual Review of Plant Biology, 57: 303–333. https://doi.org/10.1146/annurev.arplant.57.032905.105228
  29. Han Y., Watanabe S., Shimada H., Sakamoto A. 2019. Dynamics of the leaf endoplasmic reticulum modulate β-glucosidase-mediated stress-activated ABA production from its glucosyl ester. Journal of Experimental Botany, 71(6): 2058–2071. https://doi.org/10.1093/jxb/erz528
  30. Hara-Nishimura I., Matsushima R., Shimada T., Nishimura M. 2004. Diversity and formation of endoplasmic reticulumderived compartments in plants. Are these compartments specific to plant cells? Plant Physiology, 136(3): 3435–3439. https://doi.org/10.1104/pp.104.053876
  31. Haseloff J., Siemering K.R., Prasher D.C., Hodge S. 1997. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proceedings of the National Academy of Sciences of the United States of America, 94(6): 2122–2127. https://doi.org/10.1073/pnas.94.6.2122
  32. Hawes C.R., Juniper B.E., Horne J.C. 1981. Low and high voltage electron microscopy of mitosis and cytokinesis in maize roots. Planta, 152: 397–407. https://doi.org/10.1007/BF00385355
  33. Hawes C., Saint-Jore C., Martin B., Zheng H.-Q. 2001. ER confirmed as the location of mystery organelles in Arabidopsis plants expressing GFP. Trends in Plant Science, 6(6): 245–246. https://doi.org/10.1016/s1360-1385(01)01980-x
  34. Hayashi Y., Yamada K., Shimada T., Matsushima R., Nishizawa N.K., Nishimura M., Hara-Nishimura I. 2001. A proteinase-storing body that prepares for cell death or stresses in the epidermal cells of Arabidopsis. Plant and Cell Physiology, 42: 894–899. https://doi.org/10.1093/pcp/pce144
  35. Henrissat B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. The Biochemical Journal, 280(2): 309–316. https://doi.org/10.1042/bj2800309
  36. Henrissat B., Davies J.G. 2000. Glycoside hydrolases and glycosyltransferases: families, modules, and implications for genomics. Plant Physiology, 124 (4): 1515–1519. https://doi.org/10.1104/pp.124.4.1515
  37. Herman E., Larkins B. 1999. Protein storage bodies and vacuoles. Plant Cell, 11: 601–614. https://doi.org/10.1105/tpc.11.4.601
  38. Herman E.M. 2008. Endoplasmic reticulum bodies: solving the insoluble. Current Opinion in Plant Biology, 11(6): 672–679. https://doi.org/10.1016/j.pbi.2008.08.004
  39. Hiruma K., Onozawa-Komori M., Takahashi F., Asakura M., Bednarek P., Okuno T., Schulze-Lefert P., Takano Y. 2010. Entry mode-dependent function of an indole glucosinolate pathway in Arabidopsis for nonhost resistance against anthracnose pathogens. The Plant Cell, 22(7): 2429–2443. https://doi.org/10.1105/tpc.110.074344
  40. Hoefert L.L. 1975. Tubules in dilated cisternae of endoplasmic reticulum of Thlaspi arvense (Cruciferae). American Journal of Botany, 62(7): 756–760. https://doi.org/10.1002/j.1537-2197.1975.tb14110.x
  41. Hopkins R.J., Van Dam N.M., Van Loon J.J.A. 2009. Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annual Review of Entomology, 54: 57–83. https://doi.org/10.1146/annurev.ento.54.110807.090623
  42. Howell S.H. 2013. Endoplasmic reticulum stress responses in plants. Annual Review of Plant Biology, 64: 477–499. https://doi.org/10.1146/annurev-arplant-050312-120053
  43. Iversen T.-H., Flood P.R. 1969. Rod-shaped accumulations in cisternae of the endoplasmic reticulum in root cells of Lepidium sativum seedlings. Planta, 86: 295–298. https://doi.org/10.1007/BF00386462
  44. Iversen T.-H. 1970a. Cytochemical localization of myrosinase (β-thioglucosidase) in root tips of Sinapis alba. Protoplasma, 71: 451–466. https://doi.org/10.1007/BF01279688
  45. Iversen T.-H. 1970b. The morphology, occurrence, and distribution of dilated cisternae of the endoplasmic reticulum in tissues of plants of the Cruciferae. Protoplasma, 71(4): 467–477. https://doi.org/10.1007/BF01279689
  46. Jørgensen L.B., Behnke H.D., Mabry T.J. 1977. Proteinaccumulating cells and dilated cisternae of the endoplasmic reticulum in three glucosinolate containing genera: Armoracia, Capparis, Drypetes. Planta, 137: 215–224. https://doi.org/10.1007/BF00388153
  47. Jørgensen L.B. 1981. Myrosin cells and dilated cisternae of the endoplasmic reticulum in the order Capparales. Nordic Journal of Botany, 1: 433–445. https://doi.org/10.1111/j.1756-1051.1981.tb00709.x
  48. Kalinina Ia.M. 2007. Root tip cell growth and differentiation in Brassica rapa seedlings under microgravity and clinorotation conditions: Cand. Sci. Diss. Abstract. Kyiv, Institute of Cell Biology and Genetic Engineering NAS of Ukraine, 19 pp.
  49. Kamigaki A., Kondo M., Mano S., Hayashi M., Nishimura M. 2009. Suppression of peroxisome biogenesis factor 10 reduces cuticular wax accumulation by disrupting the ER network in Arabidopsis thaliana. Plant and Cell Physiology, 50(12): 2034–2046. https://doi.org/10.1093/pcp/pcp152
  50. Ketudat Cairns J.R., Esen A. β-Glucosidases. 2010. Cellular and Molecular Life Sciences, 67(20): 3389–3405. https://doi.org/10.1007/s00018-010-0399-2
  51. Kumamaru T., Uemura Y., Inoue Y., Takemoto Y., Siddiqui S.U., Ogawa M., Hara-Nishimura I., Satoh H. 2010. Vacuolar processing enzyme plays an essential role in the crystalline structure of glutelin in rice seed. Plant and Cell Physiology, 51(1): 38–46. https://doi.org/10.1093/pcp/pcp165
  52. Kumar T., Dweikat I., Sato S., Ge Z., Nersesian N., Chen H., Elthon T., Bean S., Ioerger B.P., Tilley M., Clemente T. 2012. Modulation of kernel storage proteins in grain sorghum (Sorghum bicolor (L.) Moench). Plant Biotechnology Journal, 10(5): 533–544. https://doi.org/10.1111/j.1467-7652.2012.00685.x
  53. Kumar M.N., Hsieh Y.F., Verslues P.E. 2015. At14a-Like1 participates in membrane-associated mechanisms promoting growth during drought in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 112(33): 10545–10550. https://doi.org/10.1073/pnas.1510140112
  54. Lai Y.S., Stefano G., Brandizzi F. 2014. ER stress signaling requires RHD3, a functionally conserved ER-shaping GTPase. Journal of Cell Science, 127: 3227–3232. https://doi.org/10.1242/jcs.147447
  55. Lazzeri L., Curto G., Leoni O., Dallavalle E. 2004. Effects of glucosinolates and their enzymatic hydrolysis products via myrosinase on the rootknot nematode Meloidogyne incognita (Kofoid et White) Chitw. Journal of Agricultural and Food Chemistry, 52(22): 6703–6707. https://doi.org/10.1021/jf030776u
  56. Lichtscheidl I.K., Weiss D.G. 1988. Visualization of submicroscopic structures in the cytoplasm of Allium ceps inner epidermal cells by video-enhanced contrast light microscopy. European Journal of Cell Biology, 46: 378–382. https://doi.org/10.1007/BF01322653
  57. Lipka V., Dittgen J., Bednarek P., Bhat R., Wiermer M., Stein M., Landtag J., Brandt W., Rosahl S., Scheel D., Llorente F., Molina A., Parker J., Somerville S., Schulze-Lefert P. 2005. Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science, 310(5751): 1180–1183. https://doi.org/10.1126/science.1119409
  58. Mano S., Miwa T., Nishikawa S., Mimura T., Nishimura M. 2011. The Plant Organelles Database 2 (PODB2): an updated resource containing movie data of plant organelle dynamics. Plant and Cell Physiology, 52(2): 244–253. https://doi.org/10.1093/pcp/pcq184
  59. Matsushima R., Hayashi Y., Kondo M., Shimada T., Nishimura M., Hara-Nishimura I. 2002. An endoplasmic reticulumderived structure that is induced under stress conditions in Arabidopsis. Plant Physiology, 130: 1807–1814. https://doi.org/10.1104/pp.009464
  60. Matsushima R., Kondo M., Nishimura M., Hara-Nishimura I. 2003a. A novel ER-derived compartment, the ER body, selectively accumulates a beta-glucosidase with an ER-retention signal in Arabidopsis. The Plant Journal, 33(3): 493–502. https://doi.org/10.1046/j.1365-313X.2003.01636.x
  61. Matsushima R., Hayashi Y., Yamada K., Shimada T., Nishimura M., Hara-Nishimura I. 2003b. The ER body, a novel endoplasmic reticulum-derived structure in Arabidopsis. Plant and Cell Physiology, 44: 661–666. https://doi.org/10.1093/pcp/pcg089
  62. Matsushima R., Fukao Y., Nishimura M., Hara-Nishimura I. 2004. NAI1 gene encodes a basic-helix-loop-helix-type putative transcription factor that regulates the formation of an endoplasmic reticulum-derived structure, the ER body. The Plant Cell, 16(6): 1536–1549. https://doi.org/10.1105/tpc.021154
  63. Maison C., Horstmann H., Gleorgatos S.D. 1993. Regulated docking of nuclear membrane vesicles to vimentin filaments during mitosis-1. The Journal of Cell Biology, 123: 1491–1505. https://doi.org/10.1083/jcb.123.6.1491
  64. McConn M., Creelman R.A., Bell E., Mullet J.E., Browse J. 1997. Jasmonate is essential for insect defense in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 94(10): 5473–5477. https://doi.org/10.1073/pnas.94.10.5473
  65. McFarlane H.E., Lee E.K., Van Bezouwen L.S., Ross B., Rosado A., Samuels A.L. 2017. Multiscale structural analysis of plant ER-PM contact sites. Plant and Cell Physiology, 58: 478–484. https://doi.org/10.1093/pcp/pcw224
  66. Mitsuhashi N., Shimada T., Mano S., Nishimura M., Hara-Nishimura I. 2000. Characterization of organelles in the vacuolar-storting pathway by visualization with GFP in Tobacco BY-2 cells. Plant and Cell Physiology, 41(9): 993–1001. https://doi.org/10.1093/pcp/pcd040
  67. Moussaieff A., Rogachev I., Brodsky L., Malitsky S., Toal T.W., Belcher H., Yativ M., Brady S.M., Benfey P.N., Aharoni A. 2013. High-resolution metabolic mapping of cell types in plant roots. Proceedings of the National Academy of Sciences of the United States of America, 110(13): E1232–E1241. https://doi.org/10.1073/pnas.1302019110
  68. Nagamine A., Matsusaka H., Ushijima T., Kawagoe Y., Ogawa M., Okita T.W., Kumamaru T. 2011. A role for the cysteine-rich 10 kDa prolamin in protein body I formation in rice. Plant and Cell Physiology, 52(6): 1003–1016. https://doi.org/10.1093/pcp/pcr053
  69. Nagano A.J., Matsushima R., Hara-Nishimura I. 2005. Activation of an ER body-localized β-glucosidase via a cytosolic binding partner in damaged tissues of Arabidopsis thaliana. Plant and Cell Physiology. 46(7): 1140–1148. https://doi.org/10.1093/pcp/pci126
  70. Nagano A.J., Fukao Y., Fujiwara M., Nishimura M., Hara-Nishimura I. 2008. Antagonistic jacalin-related lectins regulate the size of ER body-type β-glucosidase complexes in Arabidopsis thaliana. Plant and Cell Physiology, 49: 969–980. https://doi.org/10.1093/pcp/pcn075
  71. Nagano A.J., Maekawa A., Nakano R.T., Miyahara M., Higaki T., Kutsuna N., Hasezawa S., Hara-Nishimura I. 2009. Quantitative analysis of ER body morphology in an Arabidopsis mutant. Plant and Cell Physiology, 50(12): 2015–2022. https://doi.org/10.1093/pcp/pcp157
  72. Nakano R.T., Matsushima R., Ueda H., Tamura K., Shimada T., Li, L., Hayashi Y., Kondo M., Nishimura M., Hara-Nishimura I. 2009. GNOM-LIKE1/ERMO1 and SEC24a/ERMO2 are required for maintenance of endoplasmic reticulum morphology in Arabidopsis thaliana. The Plant Cell, 21(11): 3672–3685. https://doi.org/10.1105/tpc.109.068270
  73. Nakano R.T., Matsushima R., Nagano A.J., Fukao Y., Fujiwara M., Kondo M., Nishimura M., Hara-Nishimura I. 2012. ERMO3/MVP1/GOLD36 is involved in a cell typespecific mechanism for maintaining er morphology in Arabidopsis thaliana. Public Library of Science one, 7(11): e49103. https://doi.org/10.1371/journal.pone.0049103
  74. Nakano R.T., Yamada K., Bednarek P., Nishimura M., Hara-Nishimura I. 2014. ER bodies in plants of the Brassicales order: biogenesis and association with innate immunity. Frontiers in Plant Science, 5(73). Available at: https://www.frontiersin.org/articles/10.3389/fpls.2014.00073/full (Accessed 10 March 2014). https://doi.org/10.3389/fpls.2014.00073
  75. Nakano R.T., Pislewska-Bednarek M., Yamada K., Edger P.P., Miyahara M., Kondo M., Böttcher C., Mori M., Nishimura M., Schulze-Lefert P., Hara-Nishimura I., Bednarek P. 2017. PYK10 myrosinase reveals a functional coordination between endoplasmic reticulum bodies and glucosinolates in Arabidopsis thaliana. Plant Journal for Cell and Molecular Biology, 89(2): 204–220. https://doi.org/10.1111/tpj.13377
  76. Nakazaki A., Yamada K., Kunieda T., Sugiyama R., Hirai M.Y., Tamura K., Hara-Nishimura I., Shimada T. 2019. Leaf endoplasmic reticulum bodies identified in Arabidopsis rosette leaves are involved in defense against herbivory. Plant Physiology, 179(4): 1515–1524. https://doi.org/10.1104/pp.18.00984
  77. Nelson B.K., Cai X., Nebenfuhr A. 2004. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant Journal for Cell and Molecular Biology, 51(6): 1126–1136. https://doi.org/10.1111/j.1365-313X.2007.03212.x
  78. Nitz I., Berkefeld H., Puzio P.S., Grundler F.M.W. 2001. PYK10, a seedling and root specific gene and promoter from Arabidopsis thaliana. Plant Science, 161(2): 337–346. https://doi.org/10.1016/S0168-9452(01)00412-5
  79. Ogasawara K., Yamada K., Christeller J.T., Kondo M., Hatsugai N., Hara Nishimura I., Nishimura M. 2009. Constitutive and inducible ER bodies of Arabidopsis thaliana accumulate distinct β-glucosidases. Plant and Cell Physiology, 50(3): 480–488. https://doi.org/10.1093/pcp/pcp007
  80. Okamoto T., Minamikawa T. 1998. A vacuolar cystaine endopeptidase (SH-EP) that digests seed storage globulin: characterization, regulation of gene expression, and post-translational processing. Journal of Plant Physiology, 152(6): 675–682. https://doi.org/10.1016/S0176-1617(98)80029-1
  81. Okamoto T., Shimada T., Hara-Nishimura I., Nishimura M., Minamikawa T. 2003. C-terminal KDEL sequence of a KDELtailed cysteine proteinase (sulfhydrylendopeptidase) is involved in formation of KDEL vesicle and in efficient vacuolar transport of sulfhydrylendopeptidase. Plant Physiology, 132(4): 1892–1900. https://doi.org/10.1104/pp.103.021147
  82. Okita T.W., Rogers J.C. 1996. Compartmentation of proteins in the endomembrane system of plant cells. Annual Review of Plant Physiology and Plant Molecular Biology, 47: 327–350. https://doi.org/10.1146/annurev.arplant.47.1.327
  83. Pagny S., Lerouge P., Faye L., Gomord V. 1999. Signals and mechanisms for protein retention in the endoplasmic reticulum. Journal of Experimental Botany, 50(331): 157–158. https://doi.org/10.1093/jxb/50.331.157
  84. Porter K.R., Claude A., Fullam E.F. 1945. A study of tissue culture cells by electron microscopy. Journal of Experimental Medicine, 81(3): 233–246. https://doi.org/10.1084/jem.81.3.233
  85. Porter K.R. 1953. Observations on a submicroscopic basophilic component of cytoplasm. Journal of Experimental Medicine, 97(5): 727–750. https://doi.org/10.1084/jem.97.5.727
  86. Pozo M.G., Van Der Ent S., Van Loon L.C., Pieterse C.M.J. 2008. Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteriainduced systemic resistance in Arabidopsis thaliana. The New Phytologist, 180: 511–523. https://doi.org/10.1111/j.1469-8137.2008.02578.x
  87. Quander H., Schnepf E. 1986. Endoplasmic reticulum and cytoplasmic streaming: Fluorescence microscopical observations in adrenal epidermis cells of onion bulb scales. Protoplasma, 131: 250–252. https://doi.org/10.1007/BF01282989
  88. Quander H. 1990. Formation and disintegration of cisternae of the endoplasmic reticulum visualized in live cells by conventional fluorescence and confocal laser scanning microscopy: Role of calcium and the cytoskeleton. Protoplasma, 151: 167–170. https://doi.org/10.1007/BF01322626
  89. Reymond P., Weber H., Damond M., Farmer E.E. 2000. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. The Plant Cell, 12: 707–720. https://doi.org/10.1105/tpc.12.5.707
  90. Ridge R.W., Uozumi Y., Plazinski J., Hurley U., Williamson R.E. 1999. Developmental transitions and dynamics of the cortical ER of Arabidopsis cells seen with green fluorescent protein. Plant and Cell Physiology, 40: 1253–1261. https://doi.org/10.1093/oxfordjournals.pcp.a029513
  91. Romanchuk S.M. 2010. Ultrastructure of the statocytes and cells of the distal elongation zone of Arabidopsis thaliana under the conditions of clinorotation. Cytology and Genetics, 44(6): 329–333. https://doi.org/10.3103/S0095452710060010
  92. Romanchuk S.M., Kordyum E.L. 2013. The role of ERbodies in Brassicaceae resistance under clinorotation. "Life in Space for Life on Earth", Proceedings of the conference held at Aberdeen, UK, 2013. ESA-SP 706. Id. 44. Available at: http://articles.adsabs.harvard.edu/pdf/2013ESASP.706E..44R (Accessed January 2013).
  93. Romanchuk S.N., Kordyum E.L. 2014. ER bodies in Arabidopsis thaliana seedlings are sensitive to simulated microgravity and ionizing radiation. Newsletter of the European Low Gravity Research Association, 9: 10–11.
  94. Romanchuk S. 2019. Bulletin of Taras Shevchenko National University of Kyiv. Series: Biology, 1(77): 61–67.
  95. Romanchuk S.M. 2020. Expression of the β-glucosidase gene and ultrastructure of endoplasmic reticulum bodies in root cells of Arabidopsis thaliana under the influence of clinorotation and ionizing radiation: Cand. Sci. Diss. Kyiv, Institute of Food Biotechnology and Genomics NAS of Ukraine, 180 pp. (manuscript).
  96. Rosenberg N., Shimoni Y., Altschuler Y., Levanony H., Volokita'M., Calili C. 1993. Wheat (Triticum aestivum L.) y-gliadin accumulates in dense protein bodies within the endoplasmic reticulum of yeast'. Plant physiology, 102(1):61–69. https://doi.org/10.1104/pp.102.1.61
  97. Satoh-Cruz M., Crofts A.J., Takemoto-Kuno Y., Sugino A., Washida H., Crofts N., Okita T.W., Ogawa M., Satoh H., Kumamaru T. 2010. Protein disulfide isomerase like 1-1 participates in the maturation of proglutelin within the endoplasmic reticulum in rice endosperm. Plant and Cell Physiology, 51(9): 1581–1593. https://doi.org/10.1093/pcp/pcq098
  98. Schmid M., Simpson D., Kalousek F., Gietl C. 1998. A cysteine endopeptidase with a C-terminal KDEL motif isolated from castor bean endosperm is a marker enzyme for the ricinosome, a putative lytic compartment. Planta, 206(3): 466–475. https://doi.org/10.1007/s004250050423
  99. Schmid M., Simpson D., Gietl C. 1999. Programmed cell death in castor bean endosperm is associated with the accumulation and release of a cysteine endopeptidase from ricinosomes. Proceedings of the National Academy of Sciences of the United States of America, 96(24): 14159–14164. https://doi.org/10.1073/pnas.96.24.14159
  100. Schmid N.B., Giehl R.F., Doll S., Mock H.P., Strehmel N., Scheel D., Kong X., Hider R.C., Von Wiren N. 2014. Feruloyl-CoA 6'-Hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis. Plant Physiology, 164(1): 160–172. https://doi.org/10.1104/pp.113.228544
  101. Senatore A., Trobacher C.P., Greenwood J.S. 2009. Ricinosomes predict programmed cell death leading to anther dehiscence in tomato. Plant Physiology, 149(2): 775–790. https://doi.org/10.1104/pp.108.132720
  102. Sherameti I., Venus Y., Drzewiecki C., Tripathi S., Dan V.M., Nitz I., Varma A., Grundler F.M., Oelmüller R. 2008. PYK10, a β-glucosidase located in the endoplasmatic reticulum, is crucial for the beneficial interaction between Arabidopsis thaliana and the endophytic fungus Piriformospora indica. Plant Journal for Cell and Molecular Biology, 54(3): 428439. https://doi.org/10.1111/j.1365-313X.2008.03424.x
  103. Staehelin L.A., Chapman R.L. 1987. Secretion and membrane recycling in plant cells: novel intermediary structures visualized in ultrarapidly frozen sycamore and carrot suspension-culture cells. Planta, 171(1): 43–57. https://doi.org/10.1007/BF00395066
  104. Staehelin L.A. 1997. The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant Journal for Cell and Molecular Biology, 11(6): 1151–1165. https://doi.org/10.1046/j.1365-313x.1997.11061151.x
  105. Stefano G., Brandizzi F. 2018. Advances in plant ER architecture and dynamics. Plant and Cell Physiology, 176: 178–186. https://doi.org/10.1104/pp.17.01261
  106. Stornaiuolo M., Lotti L.V., Borgese N., Borgese N., Torrisi M.-R., Mottola G., Martire G., Bonatti S. 2003. KDEL and KKXX retrieval signals appended to the same reporter protein determine different trafficking between endoplasmic reticulum, intermediate compartment, and Golgi complex. Molecular Biology of the Cell, 14(3): 889–902. https://doi.org/10.1091/mbc.E02-08-0468
  107. Sun J.Y., Sønderby I.E., Halkier B.A., Jander G., Be Vos M. 2009. Non-volatile intact indole glucosinolates are host recognition cues for ovipositing Plutella xylostella. Journal of Chemical Ecology, 35(12): 1427–1436. https://doi.org/10.1007/s10886-009-9723-4
  108. Takahashi S., Yanai H., Nakamaru Y., Uchida A., Nakayama K., Satoh H. 2012. Molecular cloning, characterization and analysis of the intracellular localization of a water-soluble Chl-binding protein from Brussels sprouts (Brassica oleracea var. gemmifera). Plant and Cell Physiology, 53(5): 879–891. https://doi.org/10.1093/pcp/pcs031
  109. Tosi P., Gritsch C.S, He J., Shewry P.R. 2011. Distribution of gluten proteins in bread wheat (Triticum aestivum) grain. Annals of Botany, 108(1): 23–35. https://doi.org/10.1093/aob/mcr098
  110. Toyooka K., Okamoto T., Minamikawa T. 2000. Mass transport of proform of a KDEL-tailed cysteine proteinase (SH-EP) to protein storage vacuoles by endoplasmic reticulumderived vesicle is involved in protein mobilization in germinating seeds. Journal of Cell Biology, 148: 453–464. https://doi.org/10.1083/jcb.148.3.453
  111. Thangstad O.P., Iversen T.-H., Slupphaug G., Bones A. 1990. Immunocytochemical localization of myrosinase in Brassica napus L. Planta, 180: 245–248. https://doi.org/10.1007/BF00194003
  112. Thangstad O.P., Evjen K., Bones A. 1991. Immunogold-EM localization of myrosinase in Brassicaceae. Protoplasma, 161: 85–93. https://doi.org/10.1007/BF01322721
  113. Voeltz G.K., Prinz W.A., Shibata Y., Rist J.M., Rapoport T.A. 2006. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell, 124: 573–586. https://doi.org/10.1016/j.cell.2005.11.047
  114. Wang P., Hawkins T.J., Richardson C., Cummins I., Deeks M.J., Sparkes I., Hawes C., Hussey P.J. 2014. The plant cytoskeleton, NET3C, and VAP27 mediate the link between the plasma membrane and endoplasmic reticulum. Current Biology, 24(12): 1397–1405. https://doi.org/10.1016/j.cub.2014.05.003
  115. Wang J.Z., Li B., Xiao Y., Ni Y., Ke H., Yang P., De Souza A., Bjornson M., He X., Shen Z., Balcke G.U., Briggs S.P., Tissier A., Kliebenstein D.J., Dehesh K. 2017. Initiation of ER body formation and indole glucosinolate metabolism by the plastidial retrograde signaling metabolite. Molecular Plant, 10(11): 1400–1416. https://doi.org/10.1016/j.molp.2017.09.012
  116. Wang Z., Li X., Liu N., Peng Q., Wang Y., Fan B., Zhu C., Chen Z. 2019. A family of NAI2-interacting proteins in the biogenesis of the ER body and related structures. Plant Physiology, 180(1): 212–227 https://doi.org/10.1104/pp.18.01500
  117. Wasternack C., Parthier B. 1997. Jasmonate-signalled plant gene expression. Trends in Plant Science, 2(8): 302–307. https://doi.org/10.1016/S1360-1385(97)89952-9
  118. Yamada K., Nagano A.J., Nishina M., Hara-Nishimura I., Nishimura M. 2008. NAI2 is an endoplasmic reticulum body component that enables ER body formation in Arabidopsis thaliana. The Plant Cell, 20: 2529–2540. https://doi.org/10.1105/tpc.108.059345
  119. Yamada K., Nagano A.J, Ogasawara K., Hara-Nishimura I., Nishimura M. 2009. The ER body, a new organelle in Arabidopsis thaliana, requires NAI2 for its formation and accumulates specific β-glucosidases. Plant Signaling and Behavior, 4(9): 849–852. https://doi.org/10.4161/psb.4.9.9377
  120. Yamada K., Hara-Nishimura I., Nishimura M. 2011. Unique defense strategy by the endoplasmic reticulum body in plants. Plant and Cell Physiology, 52(12): 2039–2049. https://doi.org/10.1093/pcp/pcr156
  121. Yamada K., Nagano A.J., Nishina M., Hara-Nishimura I., Nishimura M. 2013. Identification of two novel endoplasmic reticulum body-specific integral membrane proteins. Plant Physiology, 161: 108–120. https://doi.org/10.1104/pp.112.207654
  122. Yamada K., Goto-Yamada S., Nakazaki A., Kunieda T., Kuwata K., Nagano A.J., Nishimura M., Hara-Nishimura I. 2020. Endoplasmic reticulum-derived bodies enable a single-cell chemical defense in Brassicaceae plants. Communications Biology, 3(21). https://doi.org/10.1038/s42003-019-0739-1
  123. Yamamoto A., Yoshii M., Murase S., Fujita M., Kurata N., Hobo T., Kagaya Y., Takeda S., Hattori T. 2014. Cell-by-cell developmental transition from embryo to post-germination phase revealed by heterochronic gene expression and ER body formation in Arabidopsis leafy cotyledon mutants. Plant and Cell Physiology, 55(12): 2112–2125. http://doi.org/10.1093/pcp/pcu139
  124. Yasuda H., Hirose S., Kawakatsu T., Wakasa Y., Takaiwa F. 2009. Overexpression of BiP has inhibitory effects on the accumulation of seed storage proteins in endosperm cells of rice. Plant and Cell Physiology, 50(8): 1532–1543. http://doi.org/10.1093/pcp/pcp098
  125. Xu Z., Escamilla-Trevino L., Zeng L., Lalgondar M., Bevan D., Winkel B., Mohamed A., Cheng C.-L., Shih M.-C., Poulton J., Esen A. 2004. Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1. Plant Molecular Biology, 55: 343–367. https://doi.org/10.1007/s11103-004-0790-1
  126. Zhou K., Slavin M., Lutterodt H., Whent M., Eskin N.A.M., Yu L. 2013. Cereals and legumes. In: Biochemistry of Foods (Third Edition). Eds N.A.M. Eskin, F. Shahidi. San Diego, CA: Elseveir Inc., pp. 4–48. https://doi.org/10.1016/B978-0-08-091809-9.00001-7