ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 7 of 9
Up
Ukr. Bot. J. 2020, 77(4): 314–323
https://doi.org/10.15407/ukrbotj77.04.314
Biotechnology, Physiology and Biochemistry

The features of forest plant photosynthetic apparatus functioning under the different light supply

Topchiy N.M., Mykhaylenko N.F., Onoiko O.B., Syvash O.O.
Abstract

The functional state of the photosynthetic apparatus of shade-tolerant forest herbaceous species (Polygonatum multiflorum, Convallaria majalis, Asarum europaeum) and shrub layer plants (Padus avium, Corylus avellana, Euonymus europaeus) from various plots differing in light supply levels has been studied. Maximum quantum yield of photochemical reactions in photosystems II (Fv/Fm) of plants from different layers and plots was in the range 0.766–0.815. Higher Fv/Fm values were found in herbaceous species from the plot better provided with water and mineral elements, but more shaded. At low photon flux density (PFD) of actinic light (80 µmol (quantum)·m–2·s–1), herbaceous plants from this plot had also higher effective quantum yield of PSII (F′v/F′m), photochemical quenching of chlorophyll fluorescence (qP) and quantum yield of electron transport (ϕPSII). Lower levels of non-photochemical quenching (qN) of fluorescence in the antenna of herbaceous plants at low PFD indicate a lesser part of energy dissipation in the lightharvesting complex. At high PFD (800 µmol (quantum)·m–2·s–1) it was revealed the decrease in F′v/F′m, ϕPSII and qP (especially qP in Asarum europaeum and Convallaria majalis) and the increase in qN in all herbaceous plant species from different plots. The values of qP and ϕPSII parameters at both low and high PFD of actinic light were higher in Padus avium and Euonymus europaeus from a less illuminated plot. Higher ϕPSII and lower qN levels in shrub layer plants from a more shaded plot show their more efficient solar energy utilization in photosynthetic processes. Higher absolute values of qP and ϕPSII parameters in shrub layer plants at 800 µmol (quantum)·m–2·s–1 indicate their higher resistance to high light intensity compared to herbaceous species. Investigated plants of herbaceous and shrub layers are characterized by high plasticity of the photosynthetic apparatus, that provides to their growth both under the forest canopy and in open areas.

Keywords: fluorescence, herbaceous plants, light supply, photosynthesis, shrub layer plants

Full text: PDF (Ukr) 803K

References
  1. Alekseev V.A. 1975. Svetovoy rezhim lesa. Ed. Kh.H. Tooming. Leningrad: Nauka, 225 pp.
  2. Aro E.M., Virgin I., Andersson B. 1993. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochimica et Biophysica Acta, 1143(2): 113–134. https://doi.org/10.1016/0005-2728(93)90134-2
  3. Bailey S., Walters R.G., Jansson S., Horton P. 2001. Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta, 213: 794–801. https://doi.org/10.1007/s004250100556
  4. Berry J.A. 1975. Adaptation of photosynthetic processes to stress. Science, 188(4188): 644–650. https://doi.org/10.1126/science.188.4188.644
  5. Bilger W., Björkman O. 1990. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynthesis Research, 25(3): 173–185. https://doi.org/10.1007/BF00033159
  6. Cavender-Bares J., Bazzaz F.A. 2004. From leaves to ecosystems: using chlorophyll fluorescence to assess photosynthesis and plant function in ecological studies. In: Chlorophyll a fluorescence: a signature of photosynthesis. Eds G. Govindjee, G. C. Papageorgiou. The Netherlands, Springer, pp. 737–755. http://doi.org/10.1007/978-1-4020-3218-9_29
  7. Ciompi S., Gentili E., Guidi L., Soldatini G.F. 1996. The effect of nitrogen deficiency on leaf gas exchange and chlorophyll fluorescence parameters in sunflower. Plant Science, 118(2): 177–184. https://doi.org/10.1016/0168-9452(96)04442-1
  8. Goh Chang-Hyo, Ko Suk-Min, Koh Seokchan, Kim Young-Joo, Bae Hyeun-Jong. 2012. Photosynthesis and environments: photoinhibition and repair mechanisms in plants. Journal of Plant Biology, 55: 93–101. http://doi.org/10.1007/s12374-011-9195-2
  9. Didukh Ya.P, Chumak K.V. 1992. Ukrainian Botanical Journal, 48(6): 22–27.
  10. Didukh Ya.P., Plyuta P.H. 1994. Fitoindykatsiya ekolohichnykh faktoriv. Ed. K.M. Sytnyk. Kyiv: Naukova Dumka, 280 pp.
  11. Didukh Ya.P., Yermolenko V.M., Kryzhanivska O.T., Popovych S.Yu., Serebryakov V.V., Tkachenko V.S., Helyuta V.P., Parchuk H.V., Rodina V.V., Fitsaylo T.V. 2000. Ekolohichna stezhka (metodyka, organizatsiya, kharakterystyka modelnoi stezhky "Lisnyky"). Ed. Ya.P. Didukh. Kyiv: Fitosotsiosentr, 88 pp.
  12. Dovbysh K.P., Vasylchenko S.M., Syvash O.O., Topchiy N.M. 2006. Ukrainian Botanical Journal, 63(3): 411–421.
  13. Genty B., Harbinson J. 1996. Regulation of light utilization for photosynthetic electron transport. In: Photosynthesis and the Environment. Ed. N.R. Baker. Dordrecht: Kluwer Acad. Publishers, pp. 67–99. https://doi.org/10.1007/0-306-48135-9_3
  14. Horodniy M.M., Lisoval A.P., Bykin A.V., Serdyuk A.H., Kalenskyi V.P., Balabayko V.F., Makarenko V.M., Marchuk I.U., Mazurkevych L.I., Rozstalnyi V.Ye., Yaruhina N.Ya., Kulyk V.D., Samokhval Ye.H., Henhalo O.M., Zykina O.M., Honchar O.M. 2005. Ahrokhimichnyi analiz. Ed. M.M. Horodniy. Kyiv: Aristey, 468 pp.
  15. Horton P., Ruban A.V., Walters R.G. 1996. Regulation of light harvesting in green plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47: 655–684. http://dx.doi.org/10.1146/annurev.arplant.47.1.655
  16. Jin X., Yang G., Tan C., Zhao C. 2015. Effects of nitrogen stress on the photosynthetic CO2 assimilation, chlorophyll fluorescence, and sugar-nitrogen ratio in corn. Scientific Reports, 5: 9311. http://doi.org/10.1038/srep09311
  17. Lawlor D.W, Tezara W. 2009. Causes of decreased photosynthetic rate and metabolic capacity in waterdeficient leaf cells: a critical evaluation of mechanisms and integration of processes. Annals of Botany, 103: 561–579. https://doi.org/10.1093/aob/mcn244
  18. Lichtenthaler H.K., Burkart S. 1999. Photosynthesis and high light stress. Bulgarian Journal of Plant Physiology, 25(3–4): 3–16.
  19. Lieffers V.J., Messier C., Stadt K.J., Gendron F., Comeau P.G. 1999. Predicting and managing light in the understory of boreal forests. Canadian Journal of Forest Research, 29(6): 796-811. https://doi.org/10.1139/x98-165
  20. Mathur S., Jain L., Jajoo A. 2018. Photosynthetic efficiency in sun and shade plants. Photosynthetica, 56(1): 354–365. https://doi.org/10.1007/s11099-018-0767-y
  21. Murchie E.H., Horton P. 1997. Acclimation of photosynthesis to irradiance and spectral quality in British plant species: chlorophyll content, photosynthetic capacity and habitat preference. Plant Cell and Environment, 20(4): 438–448. https://doi.org/10.1046/j.1365-3040.1997.d01-95.x
  22. Muscolo A., Bagnato S., Sidari, M., Mercurio R. 2014. A review of the roles of forest canopy gaps. Journal of Forestry Research, 25(4): 725–736. https://doi.org/10.1007/s11676-014-0521-7
  23. Onoiko O., Mykhaylenko N., Syvash O., Dovbysh K. 2018. Ukrainian Botanical Journal, 75(1): 84–93. https://doi.org/10.15407/ukrbotj75.01.084
  24. Sage R.F., Pearcy R.W. 1987. The nitrogen use eff iciency of C3 and C4 plants. II. Leaf nitrogen effects on the gas exchange characteristics of Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiology, 84(3): 959–963. https://doi.org/10.1104/pp.84.3.959
  25. Shrestha S., Brueck H., Asch F. 2012. Chlorophyll index, photochemical reflectance index and chlorophyll fluorescence measurements of rice leaves supplied with different N levels. Journal of Photochemistry and Photobiology. B, Biology, 113: 7–13. https://doi.org/10.1016/j.jphotobiol.2012.04.008
  26. Syvash O.O., Fomyshyna R.N. Zakharova T.O., Zolotareva E.K. 2016. The Bulletin of Kharkiv National Agrarian University. Series Biology, 2(38): 75–83.
  27. Tang J., Sun B., Cheng R., Shi Z., Luo D., Liu S., Centritto M. 2019. Effects of soil nitrogen (N) deficiency on photosynthetic N-use efficiency in N-fixing and non-Nfixing tree seedlings in subtropical China. Scientific Reports, 9: 4604. https://doi.org/10.1038/s41598-019-41035-1
  28. Terashima I., Evans J.R. 1988. Effects of light and nitrogen nutrition on the organization of the photosynthetic apparatus in spinach. Plant and Cell Physiology, 29(1): 143–155. http://doi.org/10.1093/oxfordjournals.pcp.a077461
  29. Tselnyker Yu.L. 1969. Radyatsyonnyi rezhym pod polohom lesa. Ed. A.M. Yakshyna. Moscow: Nauka, 98 pp.
  30. van Kooten O., Snel J.F.H. 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research, 25(3): 147–150. https://doi.org/10.1007/BF00033156
  31. Voloshyna N.Yu., Topchiy N.M., Bilyavska N.O., Didukh Ya.P. 2008. Reports of the National Academy of Sciences of Ukraine, 8: 153–159.
  32. Yakist gruntu. Metody vyznachennya orhanichnoi rechovyny. DSTU 4289:2004. 2005. Kyiv: Derzhspozhyvstandart Ukrainy, 16 pp.
  33. Yakist gruntu. Vyznachennya rukhomykh spoluk fosforu i kaliiu za metodom Kirsanova v modyfikatsii NNC IGA. DSTU 4405:2005. 2006. Kyiv: Derzhspozhyvstandart Ukrainy, 12 pp.