ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 5 of 9
Up
Ukr. Bot. J. 2020, 77(4): 294–304
https://doi.org/10.15407/ukrbotj77.04.294
Vegetation Science, Ecology, Conservation

Climate variables governing the growth of Tilia cordata (Malvaceae s. l. / Tiliaceae s. str.) in forest biotope in Kyiv

Prokopuk Yu.S., Koniakin S.N., Netsvetov M.V.
Abstract

The green belt of Kyiv includes several rare forest biotopes ringing the city and experiencing numerous disturbances and stressors derived from both urbanization processes and climate changes. The arboreal species perform multiple ecological function and influence overall forested ecosystems vulnerability to natural or anthropogenic factors. We have developed the radial growth chronology of Tilia cordata, a common native species in Ukraine, to investigate its climate sensitivity in an urban forest in Kyiv. We assessed relationships between the radial growth of seven trees and hydrothermal variables derived from daily data sets aggregated in intervals from 14 to 180 days instead of the conventional monthly resolution. The studied trees demonstrated a weak intercorrelation, but high subsample signal strength allowed us to perform further analysis. The overall analyses spanned common for all studied trees chronologies period 1977–2015 shows that precipitation governed the growth of Tilia cordata in Kyiv's forest, and the influence was significant in the interval between December of the resting period and May in the growing season. Temperatures averaged for March–May of the prior growth period had a weaker but significant negative impact on Tilia cordata growth. The co-inertia analysis shows that despite low intercorrelation between trees chronologies, individual growth patterns highly correlated with growth-to-climate relationships patterns suggesting that precipitations synchronized trees growth even in various microsites conditions of the studied forest. The age of the oldest studied trees, which had a mean growth rate of 0.95 mm per year, reached 300 years.

Keywords: growth-climate relationships, growth pattern, growth rate, small-leaved lime, tree ring

Full text: PDF (Ukr) 3.77M

References
  1. Aloshkina U.M. 2011. Ukrainian Botanical Journal, 68(1): 76–90.
  2. Barniak J., Wilczyński S., Krąpiec M. 2014. Dendrochronology of small-leaved lime (Tilia cordata Mill.) in southern Poland. Studia i Materiały CEPL w Rogowie, 16(40): 75–80.
  3. Bernabei M., Pollini C. 2006. Nota dendrocronologica sui tigli di S. Lugano (Bolzano, Italia). L'Italia Forestale E Montana, 2: 131–145. https://doi.org/10.4129/IFM.2006.2.03
  4. Buras A. 2017. A comment on the expressed population signal. Dendrochronologia, 44: 130–132. https://doi.org/10.1016/j.dendro.2017.03.005
  5. Cook E.R., Kairiukstis L. 1990. Methods of Dendrochronology – Applications in the Environmental Sciences. Dordrecht, Netherlands: Springer Netherlands, 403 pp. https://doi.org/10.1007/978-94-015-7879-0
  6. David A.A.J., Boura A., Lata J., Rankovic A., Kraepiel Y., Charlot C., Barot S., Abbadie L., Ngao J. 2018. Street trees in Paris are sensitive to spring and autumn precipitation and recent climate changes. Urban Ecosystems, 21: 133–145. https://doi.org/10.1007/s11252-017-0704-z
  7. Didukh Ya.P. 2012. Fundamentals of bioindication. Ed. D.M. Hrodzynskyi. Kyiv: Naukova Dumka, 344 pp.
  8. Dray S., Chessel D., Thioulouse J. 2003. Co-inertia analysis and the linking of the ecological data tables. Ecology, 84(11): 3078–3089. https://doi.org/10.1890/03-0178
  9. Dubyna D.V., Dzyuba T.P., Iemelyanova S.O., Bagrikova N.O., Borysova O.V., Borsukevych L.M., Vynokurov D.S., Gapon S.V., Gapon Yu.V., Davydov D.A., Dvoretsky T.V., Didukh Ya.P., Zhmud O.I., Kozyr M.S., Konishchuk V.V., Kuzemko A.A., Pashkevych N.A., Ryff L.E., Solomakha V.A., Felbaba-Klushyna L.M., Fitsailo T.V., Chorna G.A., Chorney I.I., Shelyag-Sosonko Yu.R., Iakushenko D.M. 2019. Prodrome of the vegetation of Ukraine. Kyiv: Naukova Dumka, 784 pp.
  10. Ellison A.M., Bank M.S., Clinton B.D., Colburn E.A., Elliott K., Ford C.R., Foster D.R., Kloeppel B.D., Knoepp J.D., Lovett G.M., Mohan J., Orwig D.A., Rodenhouse N.L., Sobczak W.V., Stinson K.A., Stone J.K., Swan C.M., Thompson J., Von Holle B., Webster J.R., 2005. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Frontiers in Ecology and Environment, 3: 479–486. https://doi.org/10.1890/1540-9295(2005)003[0479:LOFSCF]2.0.CO;2
  11. González I.G., Eckstein D. 2003. Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiology, 23(7): 497–504. https://doi.org/10.1093/treephys/23.7.497
  12. Helama S., Läänelaid A., Raisio J., Sohar K., Mäkelä A. 2020. Growth patterns of roadside Tilia spp. affected by climate and street maintenance in Helsinki. Urban Forestry and Urban Greening (in press). https://doi.org/10.1016/j.ufug.2020.126707
  13. Heo M., Gabriel K.R. 1997. A permutation test of association between configurations by means of the RV coefficient. Communications in Statistics – Simulation and Computation, 27: 843–856. https://doi.org/10.1080/03610919808813512
  14. Holmes R.L. 1983. Computer assisted quality control in tree ring dating and measurement. Tree-Ring Bulletin, 43: 69–78.
  15. Jevšenak J., Levanič T. 2018. dendroTools: R package for studying linear and nonlinear responses between tree-rings and daily environmental data. Dendrochronologia, 48: 32–39. https://doi.org/10.1016/j.dendro.2018.01.005
  16. Klein T. 2014. The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Functional Ecology, 28:1313–1320. https://doi.org/10.1111/1365-2435.12289
  17. Klymenko Yu.O., Moroz V.V., Druzhyna M.M., Kondratyev V.V. 2015. Scientific reports of NUNES of Ukraine, 5(54). Available at: http://nd.nubip.edu.ua/2015_4/27.pdf (Accessed 22 March 2020).
  18. Läänelaid A., Sander H. 2004. History and age of old limes (Tilia spp.) in Tallinn, Estonia. In: Forestry Serving Urbanised Societies. Eds C.C. Konijnendijk, J. Schipperijn, K.K. Hoyer. Vienna: IUFRO World Series, pp. 267–280.
  19. Lahoiko A., Prokopuk Yu., Netsvetov M. 2019. Wood formation in two Quercus robur phenological forms in Kyiv, Ukraine. In: Tree-ring in Archeology, Climatology and Ecology 2019. Eds G. Battipaglia, R. Marzaioli. San Leucio-Caserta, pp. 147.
  20. Lovelius N.V., Gritsan Yu.I. 1998. Lesnye ekosistemy Ukrainy i teplovlagoobespechennost. Sanct-Petersburg: Neva, 227 pp.
  21. Lykholat Yu., Alekseeva A., Khromykh N., Ivan'ko I., Kharytonov M., Kovalenko I. 2016. Assessment and prediction of viability and metabolic activity of Tilia platyphyllos in arid steppe climate of Ukraine. Agriculture & Forestry, 62(3): 55–64. https://doi.org/10.17707/AgricultForest.62.3.05
  22. Masalskyi V.P. 2010. Plant Introduction, 2: 25–27.
  23. Masalskyi V.P., Mordatenko I.L. 2014. Scientific Bulletin of UNFU, 24(4): 104–108.
  24. Moir A.K., Leroy S.A.G. 2013. Dendrochronological potential of lime (Tilia spp.) from trees at Hampton Court Palace, UK. Arboricultural Journal, 35(1): 7–17. https://doi.org/10.1080/03071375.2013.783173
  25. Moser A., Rahman M.A., Pretzsch H. Pauleit S., Rötzer T. 2017. Inter- and intraannual growth patterns of urban small-leaved lime (Tilia cordata Mill.) at two public squares with contrasting microclimatic conditions. International Journal of Biometeorology, 61: 1095–1107. https://doi.org/10.1007/s00484-016-1290-0
  26. Moser-Reischl A., Rahman M.A., Pauleit S., Pretzsch H., Rötzer T. 2019. Growth patterns and effects of urban micro-climate on two physiologically contrasting urban tree species. Landscape and urban planing, 183: 88–99. https://doi.org/10.1016/j.landurbplan.2018.11.004
  27. Murakhtanov E.S. 1981. Lipa. Moscow: Lesnaja promyshlennost, 80 pp.
  28. Nebesnyi V.B., Hrodzynska H.A., Honchar H.Yu. 2016. Visnyk of the National Academy of Sciences of Ukraine, 8: 59–66.
  29. Netsvetov M., Prokopuk Y., Didukh Y., Romenskyy M. 2018. Climatic sensitivity of Quercus robur L. in floodplain near Kyiv under river regulation. Dendrobiology, 79: 20–33. http://dx.doi.org/10.12657/denbio.079.003
  30. Netsvetov M., Prokopuk Y., Puchałka R., Koprowski M., Klisz M., Romenskyy M. 2019. River regulation causes rapid changes in relationships between floodplain oak growth and environmental variables. Frontiers in Plant Science, 10: 96. https://doi.org/10.3389/fpls.2019.00096
  31. Padun I.M. 1985. Ukrainian Botanical Journal, 42(2): 17–20.
  32. Pigott D. 1992. The clones of common lime (Tilia × vulgaris Hayne) planted in England during the seventeenth and eighteenth centuries. New Phytologist, 121: 487–493. https://doi.org/10.1111/j.1469-8137.1992.tb02949.x
  33. Radoglou K., Dobrowolska D., Spyroglou G., Nicolescu V.-N. 2008. A review on the ecology and silviculture of limes (Tilia cordata Mill., Tilia platyphyllos Scop. and Tilia tomentosa Moench.) in Europe. Bodenkultur, 3(3): 9–20.
  34. R Core Team. 2020. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available at: http://www.R-project.org/ (Accessed 20 March 2020).
  35. Rozas V. 2003. Tree age estimates in Fagus sylvatica and Quercus robur: testing previous and improved methods. Plant Ecology, 167(2): 193–212. https://doi.org/10.1023/A:1023969822044
  36. Smirnova O.V., Chistyakova A.A. 1980. Journal of General Biology, 41(3): 350–362.
  37. Solomakha V.A. 2008. Syntaxonomical of vegetation of Ukraine. Kyiv: Phytosociocentre, 296 pp.
  38. Sovakov O.V., Sovakova M.O., Ostapchuk O.S. 2017. Forestry and landscape gardening, 11. Available at: http://nbuv.gov.ua/UJRN/licgoc_2017_11_13 (Accessed 12 March 2020).
  39. Wigley T.M.L., Briffa K.R., Jones P.D. 1984. On the average value of correlated times series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and applied Meteorology, 23: 201–213. https://doi.org/10.1175/1520-0450(1984)023%3C0201:OTAVOC%3E2.0.CO;2