ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 2 of 9
Up
Ukr. Bot. J. 2019, 76(5): 390–405
https://doi.org/10.15407/ukrbotj76.05.390
Plant Taxonomy, Geography and Floristics

Infraspecific molecular trees are associated with serial macroevolution in Pottiaceae (Bryophyta)

Zander R.H.
Abstract

The analytic orientation of this paper is intended as a replacement for the antiquated but still prevalent phylogenetic inferential models and techniques of the late 20th century that are focused entirely on shared descent. Serial descent, that is, progenitor to descendant, may occur at the species or infraspecies level. In molecular systematics, species level paraphyly occurs when two examples of the same species are separated on a cladogram by a second species. This implies linear macroevolution of the second species from the first. Molecular cladograms often show cladistic structure (branching) among examples of the same species. If well-supported, such indicates a potential for evolution. A range of infraspecific and intraspecific cladistic structure in species of Pottiaceae (Bryophyta) was demonstrated in previously published molecular cladograms and data sets of other authors. This includes well-supported cladistic structure of molecular strains, and well-supported paraphyly involving other species. Large numbers of base pair changes among strains are considered here evidence of evolvability and increasing age of a species. Infraspecific strains are apparently lost in older species through speciation and extinction. Cluster analysis using DNA metadata of Oxystegus species matched published molecular cladograms to a large extent. The fact that apparent molecular strains are present in both nonparaphyletic and paraphyletic species, about half the species studied, shore up the theory that internal racial differentiation at the molecular level leads to or signals serial descent of multiple extant morphotaxa. It is because much infraspecific molecular cladistic structure exists that newly speciated taxa are already strongly cladistically dichotomized. Thus, the ultimate source of molecular paraphyly is internal to each species, and does not imply polyphyly by convergent species or cryptic taxa. Molecular systematics cannot effectively model progenitor-descendant radiation. Species with many strains are potential sources of future biological diversity. Recognition of differential evolvability may allow facilitation of complex, interactive, diverse ecosystems successfully tracking climate change.

Keywords: age, Bayesian posterior probabilities, cladogram, linear descent, macroevolution, metadata, paraphyly, presorted molecular strains, races

Full text: PDF (Eng) 804K

References
  1. Alonso M., Jiménez J.A., Nylinder S., Hedenäs L., Cano M.J. 2016. Disentangling generic limits in Chionoloma, Oxystegus, Pachyneuropsis and Pseudosymblepharis (Bryophyta: Pottiaceae): An inquiry into their phylogenetic relationships. Taxon, 65: 3–18. https://doi.org/10.12705/651.1
  2. Aubert D. 2017. A simple parsimony-based approach to assess ancestor-descendant relationships. Ukranian Botanical Journal, 74(2): 103–120. https://doi.org/10.15407/ukrbotj74.02.103 https://doi.org/10.15407/ukrbotj74.02.103
  3. Brummit W. 2002. How to chop up a tree. Taxon, 51: 31–41. https://doi.org/10.2307/1554961
  4. Brummit W. 2008. Evolution in taxonomic perspective. Taxon, 57: 1049–1050. https://doi.org/10.1002/tax.574002
  5. Cano M.J., Jiménez J.F., Gallego M.T., Jiménez J.A., Guerra J. 2009. Phylogenetic relationships in the genus Hennediella (Pottiaceae, Bryophyta) inferred from nrITS sequence data. Plant Systematic and Evolution, 281: 209–216. https://doi.org/10.1007/s00606-009-0202-8
  6. Clark B.R., Godfray H.C.J., Kitching I.J., Mayo S.J., Scoble M.J. 2009 (publ. Dec. 2008). Taxonomy as an eScience. Philosophical Transactions of the Royal Society. A. Mathematical, Physical and engineering Sciences, 367: 953–966. https://doi.org/10.1098/rsta.2008.0190
  7. Day E.H., Hua X., Bromham L. 2016. Is specialization an evolutionary dead end? Testing for differences in speciation, extinction and trait transition rates across diverse phylogenies of specialists and generalists. Journal of Evolutionary Biology, 29: 1257–1267. https://doi.org/10.1111/jeb.12867
  8. Dayrat B. 2005. Ancestor-descendant relationships and the reconstruction of the Tree of Life. Paleobiology, 31: 247–353. https://doi.org/10.1666/0094-8373(2005)031%5B0347:ARATRO%5D2.0.CO;2
  9. Feldberg K., Váňa J., Long D.G., Shaw A.J., Hentschel J., Heinrichs J. 2009. A phylogeny of Adelanthaceae (Jungermanniales, Marchantiophyta) based on nuclear and chloroplast DNA markers, with comments on classification, cryptic speciation and biogeography. Molecular Phylogeography and Evolution, 55: 293–304. https://doi.org/10.1016/j.ympev.2009.11.009
  10. Funk D.J., Omland K.E. 2003. Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics, 34: 397–423. https://doi.org/10.1146/annurev.ecolsys.34.011802.132421
  11. Futuyma D.J. 1998. Evolutionary biology. Third Edition. Sinauer Associates, Sunderland, Massachusetts. Gophna U. (Ed.). 2013. Lateral gene transfer in evolution. Springer, New York.
  12. Grundmann M., Schneider H., Russell S.J., Vogel J.C. 2006. Phylogenetic relationships of the moss genus Pleurochaete Lindb. (Bryales: Pottiaceae) based on chloroplast and nuclear genomic markers. Organisms, Diversity and Evolution, 6: 33–45. https://doi.org/10.1016/j.ode.2005.04.005
  13. Hammer Ø. 2018. PAST, PAleontological STatistics, Version 3.22. Reference Manual. Natural History Museum, University of Oslo.
  14. Hammer Ø., Harper D.A.T., Ryan P.D. 2001. PAST 3.22. Paleontological Statistics Software Package for Education and Data Analysis. Paleontologica Electronica, 4(1): 1–9.
  15. Hansen T.F., Houle D. 2008. Measuring and comparing evolvability and constraint in multivariate characters. Journal of Evolutionary Biology, 21: 1201–1219. https://doi.org/10.1111/j.1420-9101.2008.01573.x
  16. Harris J., Hobbs R.J., Higgs E., Aronson J. 2006. Ecological restoration and global climate change. Restoration Ecology, 14: 170–176. https://doi.org/10.1111/j.1526-100X.2006.00136.x
  17. Haskell D.G., Adhikari A. 2009. Darwin's manufactory hypothesis is confirmed and predicts the extinction risk of extant birds. PLOS One, 4(5, ef460): 1–6. https://doi.org/10.1371/journal.pone.0005460
  18. Hörandl E. 2006. Paraphyletic versus monophyletic taxaevolutionary versus cladistic classifications. Taxon, 55: 564–570. https://doi.org/10.2307/25065631
  19. Hörandl E. 2010. Beyond cladistics: Extending evolutionary classifications into deeper time levels. Taxon, 59(2): 345–350. https://doi.org/10.1002/tax.592001
  20. Ignatov M.S., Kuznetsova O.I., Ignatova E.A. 2019. Hybridization in mosses and how remote it can be. Biology Bulletin Reviews, 9(3): 267–273. https://doi.org/10.1134/S207908641903006X
  21. Jenner R.A. 2018. Evolution is linear: Debunking life's little joke. Bioessays, 40(1): 1700196. https://doi.org/10.1002/bies.201700196
  22. Kirschner M., Gerhart J. 1998. Evolvability. Proceedings of the National Academy of Sciences (USA), 95: 8420–8427. https://doi.org/10.1073/pnas.95.15.8420
  23. Köckinger H., Werner O., Ros R.M. 2010. A new taxonomic approach to the genus Oxystegus (Pottiaceae, Bryophyta) in Europe based on molecular data. Nova Hedwigia. Beiheft, 138: 31–49.
  24. Kučera J., Ignatov M.S. 2015. Revision of phylogenetic relationships of Didymodon sect. Rufiduli (Pottiaceae, Musci). Arctoa, 24: 79–97. https://doi.org/10.15298/arctoa.24.11
  25. Kučera J., Košnar J., Werner O. 2013. Partial generic revision of Barbula (Musci: Pottiaceae): Reestablishment of Hydrogonium and Streblotrichum, and the new genus Gymnobarbula Taxon, 62: 21–39. https://doi.org/10.1002/tax.621004
  26. Kučera J., Blockeel T.L., Erzberger P., Papp B., Soldan Z., Vellak K., Werner O., Ros R.M. 2018. The Didymodon tophaceus complex (Pottiaceae, Bryophyta) revisited: new data support the subsecific rank of currently recognized species. Cryptogamie, Bryologie, 39: 241–257. https://doi.org/10.7872/cryb/v39.iss2.2018.241
  27. Lake P.S. 2012. Resistance, resilience and restoration. Ecological Management Restoration, 14: 20–24. https://doi.org/10.1111/emr.12016
  28. Lee J.A., Marx C.J. 2019. Tales from the crypt(ic). Science, 365: 318–319. https://doi.org/10.1126/science.aay2727
  29. Magdy M., Werner O., McDaniel S.F., Goffinet B., Ros R.M. 2015. Genomic scanning using AFLP to detect loci under selection in the moss Funaria hygrometrica along a climate gradient in the Sierra Nevada Mountains, Spain. Plant Biology, 18: 280–288. https://doi.org/10.1111/plb.12381
  30. Messer P.W., Ellner S.P., Hairston Jr.N.G. 2016. Can population genetics adapt to rapid evolution? Trends in Genetics, 32: 408–418. https://doi.org/10.1016/j.tig.2016.04.005
  31. Moritz C., Schneider C. J., Wake D.B. 1992. Evolutionary relationships within the Ensatina eschscholtzii complex confirm the ring species interpretation. Systematic Biology, 41: 273–291. https://doi.org/10.1093/sysbio/41.3.273
  32. Morrison D.A. 2010. Using data-display networks for exploratory data analysis in phylogenetic studies. Molecular Biology and Evolution, 27: 1044–1057. https://doi.org/10.1093/molbev/msp309
  33. Morrison D.A. 2014. Is the Tree of Life the best metaphor, model or heuristic for phylogenetics? Systematic Biology, 53: 628–638. https://doi.org/10.1093/sysbio/syu026
  34. Palmer M.A., Falk D.A., Zedler J.B. 2006. Ecological theory and restoration ecology. In: Foundations of restoration ecology, the science and practice of ecological restoration series. 2nd ed. Eds D.A. Falk, M.A. Palmer, Island Press, Washington, D.C., USA, pp. 1–10.
  35. Pennisi E. 2019. Genomics guides help for dwindling species. Science, 365(6450): 210. https://doi.org/10.1126/ science.365.6450.210 https://doi.org/10.1126/science.365.6450.210
  36. Perry L.G., Reynolds L.V., Beechie T.J., Collins M.J., Shafroth P.B. 2015. Incorporating climate change projections into riparian restoration planning and design. Ecohydrology, 8: 863–879. https://doi.org/10.1002/eco.1645
  37. Rieseberg L.H., Brouillet L. 1994. Are many plant species paraphyletic? Taxon, 43: 21–32. https://doi.org/10.2307/1223457
  38. Shaw A.J. 2000. Molecular phylogeography and cryptic speciation in the mosses, Mielichhoferia elongata and M. mielichhoferiana (Brya ceae). Molecular Ecolology, 9: 595–608. https://doi.org/10.1046/j.1365-294x.2000.00907.x
  39. Shaw A.J. 2001. Biogeographic patterns and cryptic speciation in bryophytes. Journal of Biogeography, 28: 253–261. https://doi.org/10.1046/j.1365-2699.2001.00530.x
  40. Shaw A.J., Werner O., Ros R.M. 2003. Intercontinental Mediterranean disjunct mosses: morphological and molecular patterns. American Journal of Botany, 90: 540–550. https://doi.org/10.3732/ajb.90.4.540
  41. Spagnuolo V., Terracciano S., Giordano S. 2009. Clonal diversity and geographic structure in Pleurochaete squarrosa (Pottiaceae): different sampling scale approach. Journal of Plant Resolution, 122: 161–170. https://doi.org/10.1007/s10265-008-0206-4
  42. Thompson J.N. 2013. Relentless evolution. University of Chicago Press, Chicago. https://doi.org/10.7208/chicago/9780226018898.001.0001
  43. Vanderpoorten A., Shaw A.J. 2010. The application of molecular data to the phylogenetic delimitation of species in bryophytes: A note of caution. Phytotaxa, 9: 229–237. https://doi.org/10.11646/phytotaxa.9.1.12
  44. Vilnet A.A., Konstantinova N.A., Troitsky A.V. 2008. Phylogeny and systematics of the genus Lophozia s. str. (Dumort.) Dumort. (Hepaticae) and related taxa from nuclear ITS1–2 and chloroplast trnL-F sequences. Molecular Phylogenetics and Evolution, 47: 403–418. https://doi.org/10.1016/j.ympev.2007.12.013
  45. Werner O., Köckinger H., Magdy M., Ros R.M. 2014. On the systematic position of Tortella arctica and Trichostomum arcticum (Bryophyta, Pottiaceae). Nova Hedwigia, 98: 374–293. https://doi.org/10.1127/0029-5035/2014/0175
  46. Werner O., Köckinger H., Jiménez J. A., Ros R.M. 2009. Molecular and morphological studies on the Didymodon tophaceus complex. Plant Biosystems, 143(Suppl.): S136–145. https://doi.org/10.1080/11263500903226965
  47. Werner O., Ros R.M., Cano M.J., Guerra J. 2004. Molecular phylogeny of Pottiaceae (Musci) based on chloroplast rps4 sequence data. Plant Systematic and Evolution, 243: 147–164. https://doi.org/10.1007/s00606-003-0076-0
  48. Werner O., Ros R.M., Grundmann M. 2005. Molecular phylogeny of Trichostomoideae (Pottiaceae, Bryophyta) based on nrITS sequence data. Taxon, 54: 361–368. https://doi.org/10.2307/25065364
  49. Zander R.H. 2008a. Evolutionary inferences from nonmonophyly of traditional taxa on molecular trees. Taxon, 57: 1182–1188. https://doi.org/10.1002/tax.574011
  50. Zander R.H. 2008b. Statistical evaluation of the clade "Rhabdoweisiaceae." Bryologist, 111: 292–301. https://doi.org/10.1639/0007-2745(2008)111%5B292:SEOTCR%5D2.0.CO;2
  51. Zander R.H. 2009. Evolutionary analysis of five bryophyte families using virtual fossils. Anales del Jardín Botánico de Madrid, 66: 263–277. https://doi.org/10.3989/ajbm.2224
  52. Zander R.H. 2010. Taxon mapping exemplifies punctuated equilibrium and atavistic saltation. Plant Systematic and Evolution, 286: 69–90. https://doi.org/10.1007/s00606-010-0281-6
  53. Zander R.H. 2013. Framework for post-phylogenetic systematics. Zetetic Publications, St. Louis. Zander R.H. 2014a. Classical determination of monophyly, exemplified with Didymodon s. lat. (Bryophyta). Part 1 of 3, synopsis and simplified concepts. Phytoneuron, 2014-78: 1–7.
  54. Zander R.H. 2014b. Classical determination of monophyly, exemplified with Didymodon s. lat. (Bryophyta). Part 2 of 3, concepts. Phytoneuron, 2014-79: 1–23.
  55. Zander R.H. 2014c. Classical determination of monophyly exemplified with Didymodon s. lat. (Bryophyta). Part 3 of 3, analysis. Phytoneuron, 2014-80: 1–19.
  56. Zander R.H. 2014d. Support measures for caulistic macroevolutionary transformations in evolutionary trees. Annals of the Missouri Botanical Garden, 100: 100–107. https://doi.org/10.3417/2012090
  57. Zander R.H. 2016. Macrosystematics of Didymodon sensu lato (Pottiaceae, Bryophyta) using an analytic key and information theory. Ukranian Botanical Journal, 73(4): 319–333. https://doi.org/10.15407/ukrbotj73.04.319
  58. Zander R.H. 2017a. Anoectangium sikkimense (Pottiaceae, Bryophyta) new to the New World from Alaska, and its macroevolutionary relationships. Bryologist, 120: 435–440. https://doi.org/10.1639/0007-2745-120.4.435
  59. Zander R.H. 2017b. Oxystegus daldinianus (Pottiaceae, Bryophyta) new to the New World, evaluated with two new tools for floristics. Bryologist, 120: 51–57. https://doi.org/10.1639/0007-2745-120.1.051
  60. Zander R.H. 2018. Macroevolutionary systematics of Streptotrichaceae of the Bryophyta and application to ecosystem thermodynamic stability. Edition 2. Zetetic Publications, St. Louis.
  61. Zander R.H. 2019a. Macroevolutionary evaluation methods extended, consolidated, and exemplified with Anoectangium (Pottiaceae, Bryophyta) in North America and the Himalayas. Annals of the Missouri Botanical Garden, 104: 324–338. https://doi.org/10.3417/2019332
  62. Zander R.H. 2019b. Macroevolutionary versus molecular analysis: Systematics of the Didymodon segregates Aithobryum, Exobryum and Fuscobryum (Pottiaceae, Bryophyta). Hattoria, 10: 1–38.