ISSN 2415-8860 (Online), ISSN 0372-4123 (Print)
logoUkrainian Botanical Journal
  • 7 of 7
Ukr. Bot. J. 2019, 76(3): 260–269
Plant Physiology, Biochemistry, Cell and Molecular Biology

Hormonal complex of gametophytes of Dryopteris filix-mas (Dryopteridaceae) in in vitro culture

Kosakivska I.V., Romanenko K.O., Voytenko L.V., Vasyuk V.A., Shcherbatiuk M.M., Babenko L.M.

The content of endogenous phytohormones indolyl-3-acetic (IAA), gibberellic (GA3), abscisic (ABA), salicylic (SA) acids, cytokinins – t-zeatin (t-Z), t-zeatin-O-glucoside (t-ZG), t-zeatin riboside (t-ZR), isopentenyl adenin (iP) and isopentenyl adenosine (iPA) was determined using the high-performance liquid chromatography-mass spectrometry system Agilent 1200 in Dryopteris filix-mas gametophytes at different stages of its morphogenesis in culture in vitro. It was shown that GA3 and t-Z dominated in the thallus of 60-day gametophytes at the stage of spatulate prothallium development, which was marked by an intensive growth of the prothallium plate due to the division and extension of apical cells. The content of GA3 reached 229.9 ± 11.5 ng/g of fresh weight (f. w.) and t-Z was 56.1 ± 2.8 ng/g f. w. IAA dominated in the thallus of 90-day gametophytes, which were characterized by an active development of the archegonium cushion consisting of several layers of cells necessary for the further nutrition of the sporophyte, and formation of the archegonium and antheridium. At the final stage of morphogenesis, in the thallus of 120-day gametophytes, on the surface of which sporophytes have not yet appeared, active t-Z dominated, whereas in the thallus with sporophytes, the content of IAA reached the maximum value (395.5 ± 19.8 ng/g f. w.) that may indicate a direct involvement of the hormone in the regulation of the sporophyte growth and development. At this stage of morphogenesis, the accumulation of t-ZR and the emergence of ABA were observed. The maximum content of SA (287.7 ± 14.4 ng/g f. w.) occurred at the first stage of development. Subsequently, there was a significant reduction in the hormone level. In the thallus of gametophytes, on the surface of which the sporophyte was formed, the level of SA increased. The peculiarities of quantitative and qualitative changes have shown that physiological effects of the analyzed phytohormones is directed towards regulation the morphogenesis of Dryopteris filix-mas gametophyte.

Keywords: gametophytes, Dryopteris filix-mas, in vitro culture, morphogenesis, phytohormones

Full text: PDF (Ukr) 3.00M

  1. Achard P., Genschik P. 2009. Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. Journal of Experimental Botany, 60(4): 1085–1092.
  2. Albaum H.G. 1938. Inhibitions due to growth hormones in fern prothallium. American Journal of Botany, 938, 25: 124–133.
  3. Atallah N.M., Banks J.A. 2015. Reproduction and the pheromonal regulation of sex type in fern gametophytes. Frontiers in Plant Science, 6: 100–107.
  4. Babenko L.M., Romanenko K.O., Shcherbatiuk M.M., Vasheka O.V., Romanenko P.O., Negretsky V.A., Kosakivska I.V. 2017. Reports of the National Academy of Sciences of Ukraine, (10): 101–107.
  5. Babenko L.M., Romanenko K.O., Shcherbatiuk M.M., Vasheka O.V., Romanenko P.O., Negretsky V.A., Kosakivska I.V. 2008. Effects of exogenous phytohormones on spore germination and morphogenesis of Polystichum aculeatum (L.) Roth gametophyte in vitro culture. Cytology and Genetics, 52 (2): 117–126.
  6. Banks J.A. 1999. Gametophyte development in ferns. Annual Review of Plant Physiology and Plant Molecular Biology, 50: 163–186.
  7. Bürcky K. 1977. Antheridiogene in Anemia phyllitidis L. Sw. (Schizaeaceae) 1. Zeitverlauf der Antheridiogensynthese Citation Data. Zeitschrift für Pflanzenphysiologie, 84(2): 167–171.
  8. Cheng C.Y., Schraudolf H. 1974. Nachweis von abscisinsäure in sporen und jungen Prothallien von Anemia phyllitidis (L.) Sw. Zeitschrift fűr Pflanzenphysiologie, 71: 366–369.
  9. Cline M.G., Oh C. 2006. A reappraisal of the role of abscisic acid and its interaction with auxin in apical dominance. Annals of Botany, 98(4): 891–897.
  10. De Vries S., De Vries J., Teschke H., von Dahlen J.K., Rose L.E., Gould S.B. 2018. Jasmonic and salicylic acid response in the fern Azolla filiculoides and its cyanobiont. Plant, Cell & Environment, 41(11): 2530–2548.
  11. Dempsey D.A., Klessig D.F. 2017. How does the multifaceted plant hormone salicylic acid combat disease in plants and are similar mechanisms utilized in humans? BMC Biology, 15: 23–34.
  12. Derzhavina N.M., Pokrovskaya Z.M. 2011. Turczaninowia, 14(3): 131–144.
  13. Dobrev P.I., Vankova R. 2012. Quantification of abscisic acid, cytokinin, and auxin content in saltstressed plant tissues. Plant Salt Tolerance. Methods in Molecular Biology (Methods and Protocols), 913: 251–261.
  14. Enders T.A., Strader, L.C. 2015. Auxin activity: past, present, and future. American Journal of Botany, 102: 180–196.
  15. Fonseca S., Rosado A., Vaughan-Hirsch J., Bishopp A., Chini A. 2014. Molecular locks and keys: the role of small molecules in phytohormone research. Frontiers in Plant Science, 5: 1–16.
  16. Frébort I., Kowalska M., Hluska T., Frébortová J., Galuszka P. 2011. Evolution of cytokinin biosynthesis and degradation. Journal of Experimental Botany, 62(8): 2431–2452.
  17. Fukui K., Hayashi K. 2018. Manipulation and Sensing of Auxin Metabolism, Transport and Signaling. Plant and Cell Physiology, 59(8): 1500–1510.
  18. Gantait S., Sinniah U.R., Ali M.N., Sahu N.C. 2015. Gibberellins – a multifaceted hormone in plant growth regulatory network. Current Protein & Peptide Science, 16(5): 406–412.
  19. Greer G.K., Dietrich M.A., Stewart S., Devol J., Rebert A. 2009. Morphological functions of gibberellins in leptosporangiate fern gametophytes: insights into the evolution of form and gender expression. Botanical Journal of the Linnean Society, 159: 599–615.
  20. Haufler C.H., Pryer K.M, Schuettpelz E., Sessa E.B., Farrar D.R., Moran R., Schneller J.J., Watkins Jr.J.E., Windham M.D. 2016. Sex and the single gametophyte: Revising the homosporous vascular plant life cycle in light of contemporary research. BioScience, 66(11): 928–937.
  21. Hickok L.G. 1983. Abscisic acid blocks antheridiogeninduced antheridium formation in gametophytes of the fern Ceratopteris, Canadian Journal of Botany, 61: 888–892.
  22. Hickok L.G. 1985. Abscisic acid resistant mutants in the fern Ceratopteris: characterization and genetic analysis. Canadian Journal of Botany, 63: 1582–1585.
  23. Hirano K., Nakajima N., Asano K., Nishiyama T., Sakakibara H., Kojima M., Katoh E., Xiang H., Tanahashi T., Hasaebe M., Banks J., Ashikari M., Kiatano H., Ueguchi-Takana M., Matsuoka M. 2009. The GID1-mediated gibberellin perception mechanism is conserved in the lycophyte Selaginella moellendorfii but not in the bryophyte Physcomitrella patens. Plant Cell, 19: 3058–3079.
  24. Hwang I., Sheen J., Muller B. 2012. Cytokinin signaling networks. Annual Review of Plant Biology, 63: 353–380.
  25. Karpets Yu.V., Kolupaev Yu.E., Kosakivska I.V. 2016. Plant physiology and genetics, 48(2): 158–166.
  26. Kieber J.J., Schaller G.E. 2014. Cytokinins. Arabidopsis Book, 12: e0168.
  27. Kosakivska I.V., Babenko L.M., Shcherbatiuk M.M., Vedenicheva N.P. Voytenko L.V., Vasyuk V.A. 2016. Phytohormones during growth and development of Polypodiophyta. Advances in Biology & Earth Sciences, 1(1): 26–44.
  28. Kosakivska I.V., Vasyuk V.A., Voytenko L.V. 2018. Reports of the National Academy of Sciences of Ukraine, 12: 79–86.
  29. Lo S.F., Yang S.Y., Chen K.T., Hsing Y.I., Zeevaart J.A., Chen L.J., Yu S.M. 2008. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell, 20(10): 2603–2618.
  30. Menéndez V., Villacorta N.F., Revilla M.A., Gotor V., Bernard P., Fernández H. 2006a. Exogenous and endogenous growth regulators on apogamy in Dryopteris affinis (Lowe) Fraser-Jenkins sp. [ssp.] affinis. Plant Cell Reports, 25(2): 85–91.
  31. Menéndez V., Revilla M.A., Bernard P., Gotor V., Fernández H. 2006b. Gibberellins and antheridiogen on sex in Blechnum spicant L. Plant Cell Reports, 25: 1104–1110.
  32. Menéndez V., Revilla M.A., Fal M.A., Fernández H. 2009. The effect of cytokinins on growth and sexual organ development in the gametophyte of Blechnum spicant L. Plant Cell, Tissue and Organ Culture, 96: 245–250.
  33. Menéndez V., Arbesú R., Somer M., Revilla A., Fernández H. 2011a. From spore to sporophyte: how to proceed in vitro. In: Working with Ferns: Issues and Applications. Eds H. Fernández, A. Kumar, A. Revilla. New York. Dordrecht; Heidelberg; London: Springer, pp. 97–110.
  34. Menéndez V., Abul Y., Bohanec B., Lafont F., Fernández H. 2011b. The effect of exogenous and endogenous phytohormones on the in vitro development of gametophyte and sporophyte in Asplenium nidus L. Acta Physiologiae Plantarum, 33: 2493–2500.
  35. Naramoto S. 2017. Polar transport in plants mediated by membrane transporters: focus on mechanisms of polar auxin transport. Current Opinion in Plant Biology, 40: 8–14.
  36. Radojicic A., Li X., Zhang Y. 2018. Salicylic acid: A dou bleedged sword for programed cell death in plants. Frontiers in Plant Science, 9, Article 1133.
  37. Raghavan V. 1989. Developmental biology of fern gametophytes. Cambridge: Cambridge University Press, 361 pp.
  38. Romanenko K.O., Babenko L.M., Vasheka O.V., Romanenko P.O., Kosakivska I.V. 2018. Reports of the National Academy of Sciences of Ukraine, 11: 96–105.
  39. Sah S.K., Reddy K.R., Li J. 2016. Abscisic acid and abiotic stress tolerance in crop plants. Frontiers in Plant Science, 7: 1–26.
  40. Schaller G.E., Street I.H., Kieber J.J. 2014. Cytokinin and the cell cycle.Current Opinion in Plant Biology, 21: 7–15.
  41. Sheffield E. 2008. Alternation of generations. In: Biology and evolution of ferns and lycophytes. Ed. T.A. Ranker, C.H. Haufler. Cambridge: Cambridge University Press, pp. 49–74.
  42. Tanaka J., Yano K., Aya K., Hirano K., Takehara S., Koketsu E., Ordonio R.L., Park S.H., Nakajima M., Ueguchi-Tanaka M., Matsuoka M. 2014. Antheridiogen determines sex in ferns via a spatiotemporally split gibberellin synthesis pathway. Science, 346(6208): 469–473.
  43. Vedenicheva N.P., Kosakivska I.V. 2017. Cytokinins as regulators of plant ontogenesis under different growth conditions. Kyiv: Nash Format, 200 pp.
  44. Vedenicheva N.P., Kosakivska I.V. 2018. Endogenous cytokinins dynamics during development of sporophytes of perennial ferns Dryopteris filix-mas and Polystichum aculeatum (Dryopteridaceae). Ukrainian Botanical Journal, 75(4): 384–391.
  45. Vasjuk V.A., Kosakivska I.V. 2015. Ukrainian Botanical Journal, 72(1): 65–73.
  46. Voytenko L.V., Kosakivska I.V. 2016. The bulletin of the Kharkiv national agricultural university of V.V. Dokuchaeva, 1(37): 27–41.
  47. Warne T.R., Hickok L.G. 1991. Control of sexual development in gametophytes of Ceratopteris richardii: antheridiogen and abscisic acid. Botanical Gazette (Chicago), 152: 148–153.
  48. Wells D.M., Laplaze L., Bennett M.J., Vernoux T. 2013. Biosensors for phytohormone quantification: challenges, solutions, and opportunities. Trends in Plant Sciences, 18(5): 244–249.
  49. Zia M., Riaz-ur-Rehman, Chaudhary M.F. 2007. Hormonal regulation for callogenesis and organogenesis of Artemisia absinthium L. African Journal Biotechnology, 6(16): 1874–1878.