ISSN 2415-8860 (Online), ISSN 0372-4123 (Print)
logoUkrainian Botanical Journal
  • 2 of 10
Up
Ukr. Bot. J. 2018, 75(6): 517–524
https://doi.org/10.15407/ukrbotj75.06.517
Vegetation Science, Ecology, Conservation

Reconstruction of annual carbon sequestration in stems of Quercus robur (Fagaceae) in the floodplain forests of Kyiv

Prokopuk Yu.S.
Abstract

Floodplain forests are highly productive terrestrial ecosystems that perform crucial ecological functions, e.g. carbon sequestration. Quercus robur, a long-lived hardwood species often dominating in floodplains, is an appropriate object to investigate the long-term aboveground carbon fixation. In this study we apply dendrochronological approaches for reconstruction of the carbon sequestration in Q. robur stem biomass. We studied trees growing in five floodplain sites in Kyiv and compared them with a site situated about 4 km away from the nearest floodplain, Feofania Park. The total carbon stock in stems of Q. robur at the age of 50 years averages 319 kg in the Muromets forest, 129 kg in Zhukiv Ostriv Reserve (zakaznyk), 114 kg in Lisnyky Reserve (zakaznyk), 101 kg and 72 kg in the Bychok and Dubysche forests, respectively. At the age of 150, oaks growing in the Zhukiv Ostriv Reserve show the largest amount of stems carbon, 902 kg, while in Lisnyky Reserve trees contain the lowest value of 708 kg. Long-term estimation reveals an increasing trend in the annual carbon stock in all studied floodplain forests, although the highest values up to 15 kg per year are found to occur in periods with optimal growth conditions. In the periods of drought and low water level of the Dnipro River, floodplain oaks yearly carbon stock is found to drop to 9 kg. At the same time, carbon accumulated in old -grown oaks outside the floodplain is higher than in the floodplain forests by 37% at the age of 25 and by 14–28% in older trees. In the Muromets site, 25 year old oaks are found to have 56% higher carbon accumulation than in the trees of the same age in Feofania. Hence, this difference becomes non significant with trees aging. The analyses using 25-yr successive intervals reveal that carbon stock in Feofania is higher than that in the floodplain by 1.6 and 1.5–2.8 times in young and in mature trees, respectively.

Keywords: Quercus robur, floodplain forests, radial growth, carbon, dendrochronology

Full text: PDF (Ukr) 1.05M

References
  1. Alioshkina U.M. Ukr. Bot. J., 2011, 68(1): 76–90.
  2. Alioshkina U.M., Zhovtenko A.A., Vyshenska I.G., Rasevych V.V., Gavrylov S.O., Tkachova A.O. Naukovi zapysky NaUKMA, 2011, 119: 52–56.
  3. Babst F., Bouriaud O., Papale D., Gielen B., Janssens I.A., Nikinmaa E., Ibrom A., Wu J., Bernhofer C., Köstner B., Grünwald T., Seufert G., Ciais P., Frank D. Aboveground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. New Phytol., 2014, 201: 1289–1303. https://doi.org/10.1111/nph.12589
  4. Burke M.K., Lockaby G.B., Conner W.H. Aboveground production and nutrient circulation along a flooding gradient in a South Carolina Coastal Plain forest. Canad. J. For. Res., 1999, 29: 1402–1418.
  5. Cierjacks A., Kleinschmit B., Babinsky M., Kleinschroth F., Markert A., Menzel M., Ziechmann U., Schiller T., Graf M., Lang F. Carbon stocks of soil and vegetation on Danubian floodplains. J. Plant Nutr. Soil Sci., 2010, 173(5): 644–653. https://doi.org/10.1002/jpln.200900209
  6. Conner W.H., Day J.W. Water level variability and litterfall production of forested fresh-water wetlands in Louisiana. Amer. Midl. Nat., 1992, 128: 237–245.
  7. Copini P., den Ouden J., Robert E.M.R., Tardif J.C., Loesberg W.A., Goudzwaard L., Sass-Klaassen U. Flood-ring formation and root development in response to experimental flooding in young Quercus robur trees. Front. Plant Sci., 2016, 7: e775. https://doi.org/10.3389/fpls.2016.00775
  8. Day F.P., West S.K., Tupacz E.G. The influence of groundwater dynamics in a periodically flooded ecosystem, the Great Dismal Swamp. Wetlands, 1988, 8: 1–13.
  9. Didukh Ya.P., Alioshkina U.M. Ukr. Phytosoc. Coll. Ser. C, 2007, 25: 48–56.
  10. Didukh Ya.P., Alioshkina U.M. Biotopy Kyeva (Biotopes of Kyiv). Kyiv: NaUKMA, 2012, 163 pp.
  11. Ducousso A., Bordacs S. Technical Guidelines for genetic conservation and use for pedunculate and sessile oaks (Quercus robur and Q. petraea). Rome, 2004. Available at: http://www.euforgen.org (accessed 2 October 2018).
  12. Ellenberg H.H. Vegetation Ecology of Central Europe. 4th ed. Cambridge; New York: Cambridge Univ. Press, 2009, 756 pp.
  13. Glenz C., Schlaepfer R., Iorgulescu I., Kienast F. Flooding tolerance of Central European tree and shrub species. For. Ecol. Manage, 2006, 235: 1–13. https://doi.org/10.1016/j.foreco.2006.05.065
  14. Gren I.-M., Groth K.-H., Sylvén M. Economic values of Danube floodplains. J. Environ. Manag., 1995, 45(4), 333–345. https://doi.org/10.1006/jema.1995.0080
  15. Gričar J., Luis M., Hafner P., Levanič T. Anatomical characteristics and hydrologic signals in tree-rings of oaks (Quercus robur L.). Trees, 2013, 27: 1669–1680. https://doi.org/10.1007/s00468-013-0914-9
  16. Grissino-Mayer H. Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Research, 2001, 57: 205–221.
  17. Holmes R.L. Computer assisted quality control in tree ring dating and measurement. Tree-Ring Bull., 1983, 43: 69–78.
  18. Klimo E. History, condition and management of floodplain forest ecosystems in Europe. In: Environmental Forest Science. Ed. K. Sassa. Dordrecht: Springer Science+Business Media, 1998, pp. 173–186.
  19. Kreuzwieser J., Papadopoulou E., Rennenberg H. Interaction of flooding with carbon metabolism of forest trees. Plant Biol., 2004, 6(3): 299–306. https://doi.org/10.1055/s-2004-817882
  20. Matthews G. The carbon content of trees. Forestry Commission Technical Paper, 1993, 4: 1–21.
  21. Netsvetov M.V., Suslova E.P. Industrial botany (Promyshlennaya botanika), 2009, 9: 60–67.
  22. Netsvetov M., Prokopuk Yu., Didukh Ya., Romenskyy M. Climatic sensitivity of Quercus robur L. in floodplain near Kyiv under river regulation. Dendrobiology, 2018, 79: 20–30. https://doi.org/10.12657/denbio.079.003
  23. Parnikoza I.Yu. Strana znaniy, 2014, 9: 43–46.
  24. Prokopuk Yu.S., Netsvetov M.V. Naukovyi visnyk NLTU, 2016, 26(3): 158–164.
  25. Rieger I., Kowarik I., Cierjacks A. Drivers of carbon sequestration by biomass compartment of riparian forests. Ecosphere, 2015, 6(10): art185. https://doi.org/10.1890/ES14-00330.1
  26. Rieger I., Kowarik I., Cherubini P., Cierjacks A. A novel dendrochronological approach reveals drivers of carbon sequestration in tree species of riparian forests across spatiotemporal scales. Sci. Total Environ., 2016, 574: 1261–1275. https://doi.org/10.1016/j.scitotenv.2016.07.174
  27. Rieger I., Lang F., Kleinschmit B., Kowarik I., Cierjacks A. Fine root and aboveground carbon stocks in riparian forests: the roles of diking and environmental gradients. Plant Soil, 2013, 370(1–2): 497–509. https://doi.org/10.1007/s11104-013-1638-8
  28. Rozas V. Tree age estimates in Fagus sylvatica and Quercus robur: testing previous and improved methods. Plant Ecol., 2003, 167(2): 193–212.
  29. Rozas V., García-González I. Non-stationary influence of El Niño-Southern Oscillation and winter temperature on oak latewood growth in NW Iberian Peninsula. Int. J. Biometeorol., 2012, 56: 787–800. https://doi.org/10.1007/s00484-011-0479-5
  30. Siebel H.N., van Wijk M., Blom C.W .P.M. Can tree seedlings survive increased flood levels of rivers? Acta Bot. Neerl., 1998, 47(2): 219–230.
  31. Späth V. Zur Hochwassertoleranz von Auenwaldbaeumen. Natur und Landschaft, 1988, 63: 312–315.
  32. Vincke C., Delvaux B. Porosity and available water of temporarily waterlogged soils in a Quercus robur (L.) declining stand. Plant Soil, 2005, 271: 189–203. https://doi.org/10.1007/s11104-004-2388-4
  33. Vyshnevskyi V.I. Dnipro bilya Kyeva. Kyiv: Interpres LTD, Nika-Tsentr, 2005, 92 pp.
  34. Wright R.B., Lockaby B.G.,Walbridge M.R. Phosphorus availability in an artificially flooded southeastern floodplain forest soil. Soil Sci. Soc. Amer. J., 2001, 65(4): 1293–1302. https://doi.org/10.2136/sssaj2001.6541293x