ISSN 2415-8860 (Online), ISSN 0372-4123 (Print)
logoUkrainian Botanical Journal
  • 8 of 8
Up
Ukr. Bot. J. 2018, 75(4): 384–391
https://doi.org/10.15407/ukrbotj75.04.384
Plant Physiology, Biochemistry, Cell and Molecular Biology

Endogenous cytokinins dynamics during development of sporophytes of perennial ferns Dryopteris filix-mas and Polystichum aculeatum (Dryopteridaceae)

Vedenicheva N.P., Kosakivska I.V.
Abstract

The qualitative composition and dynamics of cytokinins in the fronds and rhizomes of perennial ferns Dryopteris filix-mas and Polystichum aculeatum have been investigated using high-performance liquid chromatography in combination with mass spectrometry. Sporophytes were studied at the stages of intensive vegetative growth (April), formation of sporangia (May) and sporulation (June). Plants of P. aculeatum were also analyzed at the stage of winter vegetation (February). The accumulation of trans-zeatin in fronds of P. aculeatum was revealed at the intensive growth stage, whereas in D. filix-mas, the increase in this cytokinin content was observed during the formation of sporangia. The level of zeatin riboside increased in fronds and rhizomes of both fern species at the stage of sporulation. The cessation of the ferns intensive growth involved the accumulation of conjugate – zeatin-O-glucoside. At certain stages of sporophyte development, isopentenyl-type cytokinins were detected: in D. filix-mas, low levels of isopentenyladenine – during sporulation, and in P. aculeatum, quite significant amounts of isopentenyladenosine and isopentenyladenine – in fronds at the stage of intensive growth and in rhizomes – during sporangia formation. In P. aculeatum fronds, active free cytokinins – zeatin and zeatin riboside – were accumulated during the winter vegetation indicating that they were involved in the maintenance of the plant photosynthetic activity under unfavorable conditions. The root system of both fern species was characterized by a lower level of cytokinins as compared to the aerial part. The dynamics of the spectrum and content of cytokinins in the fern organs was species-specific and indirectly testified to the involvement of these phytohormones in growth and development control. The features of differences and similarities of the regulatory role of cytokinins in ferns and seed plants are discussed.

Keywords: Polystichum aculeatum, Dryopteris filix-mas, cytokinins, fern, growth, development

Full text: PDF (Eng) 702K

References
  1. Abul Y., Menéndez V., Gómez-Campo C., Revilla M.A., Lafont F. Occurrence of plant growth regulators in Psilotum nudum. J. Plant Physiology, 2010, 167(14): 1211– 1213. https://doi.org/10.1016/j.jplph.2010.03.015 https://www.ncbi.nlm.nih.gov/pubmed/20488581
  2. Aloni R., Aloni E., Langhans M., Ullrich C.I. Role of cytokinin and auxin in shaping root architecture: Regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann. Bot., 2006, 97: 883–893. https://doi.org/10.1093/aob/mcl027 https://www.ncbi.nlm.nih.gov/pubmed/16473866 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803412
  3. Babenko L.M., Skaterna T.D., Kosakivska I.V. Lipoxygenase activity in ontogenesis of ferns Salvinia natans and Polystichum aculeatum. Ukr. Biochem. J., 2017, 89(4): 5–12. https://doi.org/10.15407/ubj89.04.005 https://www.ncbi.nlm.nih.gov/pubmed/29236385
  4. Babenko L.M., Romanenko K.O., Shcherbatiuk M.M., Vasheka O.V., Romanenko P.O., Negretsky V.A., Kosakivska I.V. Effects of exogenous phytohormones on spore germination and morphogenesis of Polystichum aculeatum (L.) Roth gametophyte in vitro culture. Cytology and Genetics, 2018, 52(2): 117–126. https://doi.org/10.3103/S0095452718020032
  5. Bonomo M.C., Martinez O.G., Tanco M.E., Cardozo R., Aviles Z. Spores germination and gametophytes of Alsophila odonelliana (Cyatheaceae) in different sterile media. Phyton (B. Aires), 2013, 83(1): 119–126.
  6. Chiappetta A., Innocenti A.M. Immunocytochemical localization of cytokinin in Azolla filiculoides. Plant Biosystems, 2006, 3: 229–233. https://doi.org/10.1080/11263500600756736
  7. Cortleven A., Schmülling T. Regulation of chloroplast development and function by cytokinin. J. Exp. Bot., 2015, 66(16): 4999–5013. https://doi.org/10.1093/jxb/erv132 https://www.ncbi.nlm.nih.gov/pubmed/25873684
  8. De Vries J., Fischer A.M., Roettger M., Rommel S., Schluepmann H., Brautigam A., Carlsbbecker A., Gould S.B. Cytokinin-induced promotion of root meristem size in the fern Azolla supports a shoot-like origin of euphyllophyte roots. New Phytologist, 2016, 209(2): 705–720. https://doi.org/10.1111/nph.13630 https://www.ncbi.nlm.nih.gov/pubmed/26358624 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5049668
  9. Greer G.K., Dietrich M.A., De Vol J.A., Rebert A. The effects of exogenous cytokinin on the morphology and gender expression of Osmunda regalis gametophytes. Amer. Fern J., 2012, 102(1): 32–46. https://doi.org/10.1640/0002-8444-102.1.32
  10. Jameson P.E., Song J. Cytokinin: a key driver of seed yield. J. Exp. Bot., 2016, 67(3): 593–606. https://doi.org/10.1093/jxb/erv461 https://www.ncbi.nlm.nih.gov/pubmed/26525061
  11. Ivanov V.B., Filin A.N. Cytokinins regulate root growth through its action on meristematic cell proliferation but not on the transition to differentiation. Functional Plant Biology, 2017, 45(2): 215–221. https://doi.org/10.1071/FP16340
  12. Kieber J.J., Schaller G.E. Cytokinins. The Arabidopsis Book, 2014, 11: e0168. https://doi.org/10.1199/tab.0168 https://www.ncbi.nlm.nih.gov/pubmed/24465173 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894907
  13. Kosakivska I.V., Babenko L.M., Shcherbatiuk M.M., Vedenicheva N.P. Voytenko L.V., Vasyuk V.A. Phytohormones during growth and development of Polypodiophyta. Advances in Biology & Earth Sciences, 2016, 1(1): 26–44.
  14. Kotukhov Yu.A. Bull. Main Bot. Gard., 1974, 94: 10–18.
  15. Kyozuka J. Control of shoot and root meristem function by cytokinin. Curr. Opin. Plant Biol., 2007, 10: 442–446. https://doi.org/10.1016/j.pbi.2007.08.010 https://www.ncbi.nlm.nih.gov/pubmed/17904411
  16. Mok D.W.S., Mok M.C. Cytokinin metabolism and action. Annu. Rev. Plant Physiol. Plant Mol. Biol., 2001, 52: 89–118. https://doi.org/10.1146/annurev.arplant.52.1.89 https://www.ncbi.nlm.nih.gov/pubmed/11337393
  17. Menéndez V., Revilla M.A., Fal M.A., Fenández H. The effect of cytokinins on growth and sexual organ development in the gametophyte of Blechnum spicant L. Plant Cell Tiss. Organ Cult., 2009, 96: 245–250. https://doi.org/10.1007/s11240-008-9481-y
  18. Menéndez V., Abul Y., Bohanec B., Lafont F., Fernández H. The effect of exogenous and endogenous phytohormones on the in vitro development of gametophyte and sporophyte in Asplenium nidus L. Acta Physiologiae Plantarum, 2011, 33(6): 2493–2500. https://doi.org/10.1007/s11738-011-0794-9
  19. Osugi A., Sakakibara H. How do plants respond to cytokinins and what is their importance? BMC Biology, 2015, 13: 102. https://doi.org/10.1186/s12915-015-0214-5 https://www.ncbi.nlm.nih.gov/pubmed/26614311 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4662812
  20. Plackett A.R.G., Huang L., Sanders H.L., Langdale J.A. High-efficiency stable transformation of the model fern species Ceratopteris richardii via microparticle bombardment. Plant Physiol., 2014, 165(1): 3–14. https://doi.org/10.1104/pp.113.231357 https://www.ncbi.nlm.nih.gov/pubmed/24623851 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4012588
  21. Pryer K.M., Schneider H., Smith A.R., Cranfill R., Wolf P.G., Hunt J.S., Sipes S.D. Horstails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature, 2001, 409(6820): 618–622. https://doi.org/10.1038/35054555 https://www.ncbi.nlm.nih.gov/pubmed/11214320
  22. Rivera A., Conde P., Cañal M.J., Fernández H. Biotechnology and Apogamy in Dryopteris affinis spp. affinis: The Influence of Tissue Homogenization, Auxins, Cytokinins, Gibberellic Acid, and Polyamines. In: Current Advances in Fern Research. Ed. H. Fernández. Cham: Springer, 2018, pp. 139–152. https://doi.org/10.1007/978-3-319-75103-0_7
  23. Rolli E., Brunoni F., Marieschi M., Torelli A., Ricci A. In vitro micropropagation of the aquatic fern Marsilea quadrifolia L. and genetic stability assessment by RAPD markers. Plant Biosystems, 2015, 149(1): 7–14. https://doi.org/10.1080/11263504.2013.806366
  24. Romanov G.A. How do cytokinins affect the cell? Russian J. Plant Physiol., 2009, 56(2): 268–290. https://doi.org/10.1134/S1021443709020174
  25. Sabovljević A., Soković M., Glamočlija J., Ćirić A., Vujićić M., Pejin B., Sabovljević M. Comparison of extract bio-activities of in situ and in vitro growth selected bryophyte species. Afr. J. Microbiol. Res., 2010, 4(9): 808–812.
  26. Schaller G.E., Street I.H., Kieber J.J. Cytokinin and the cell cycle. Curr. Opin. Plant Biol., 2014, 21: 7–15. https://doi.org/10.1016/j.pbi.2014.05.015 https://www.ncbi.nlm.nih.gov/pubmed/24994531
  27. Shcherbatiuk M.M., Babenko L.M., Vasheka O.V., Kosakivska I.V. Pigments and ultrastructural peculiaries of cell organells of fern Polystichum aculeatum (L.) Roth. at different stages of development. Biol. Stud., 2017, 11(2): 91–102. https://doi.org/10.30970/sbi.1102.526
  28. Schneider H. Evolutionary morphology of ferns (monilophytes). Annual Plant Reviews, 2013, 45: 115–140. https://doi.org/10.1002/9781118305881.ch4
  29. Spiro M.D., Torabi B., Cornell C.N. Cytokinins induce photomorphogenic development in dark-grown gametophytes of Ceratopteris richardii. Plant Cell Physiol., 2004, 45(9): 1252–1260. https://doi.org/10.1093/pcp/pch146 https://www.ncbi.nlm.nih.gov/pubmed/15509848
  30. Talla S.K., Panigrahy M., Kappara S., Nirosha P., Neelamraju S., Ramanan R. Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes. J. Exp. Bot., 2016, 67(6): 1839–1851. https://doi.org/10.1093/jxb/erv575 https://www.ncbi.nlm.nih.gov/pubmed/26826216 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4783366
  31. Vasheka E.V. The some biological characteristics of ferns of genus Dryopteris Adans introduced into open ground in the Acad. O.V. Fomin Botanical Garden. Bull. Nikit. State Bot. Gard., 2004, 89: 12–15.
  32. Vedenicheva N.P., Musatenko L.I. Visn. Kharkiv. nats. agrar. un-tu. Ser. Biology, 2008, 3(15): 15–23.
  33. Vedenicheva N.P., Sytnik K.M. Cytokinins localization and dynamics in different parts of Equisetum arvense L. Dop. Nac. akad. nauk Ukr., 2013, 11: 150–156.
  34. Vedenicheva N.P. Visn. Kharkiv. nats. agrar. un-tu. Ser. Biology, 2016, 1(37): 6–26.
  35. Vedenicheva N.P., Kosakivska I.V. Ukr. Bot. J., 2016, 72(3): 277–282. https://doi.org/10.15407/ukrbotj73.03.277
  36. Vedenicheva N.P., Al-Maali G.A., Mytropolska N.Yu., Mykhaylova O.B., Bisko N.A., Kosakivska I.V. Endogenous cytokinins in medicinal basidiomycetes mycelial biomass. Biotechnologia Acta, 2016, 9(1): 55–63. https://doi.org/10.15407/biotech9.01.055
  37. Vedenicheva N.P., Kosakivska I.V. Cytokinins as regulators of plant ontogenesis under different growth conditions. Kyiv: Nash Format, 2017, 200 pp.
  38. Von Schwartzenberg K., Fernández Núñez M., Blaschke H., Dobrev P.I., Novák O., Motyka V., Strnad M. Cytokinins in the bryophyte Physcomitrella patens: analyses of activity, distribution, and cytokinin oxidase/dehydrogenase overexpression reveal the role of extracellular cytokinins. Plant Physiol., 2007, 145(3): 786–800. https://doi.org/10.1104/pp.107.103176 https://www.ncbi.nlm.nih.gov/pubmed/17905863 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2048801
  39. Voytenko L.V., Kosakivska I.V. Dopov. Nac akad. nauk Ukr., 2017, 12: 112–118.
  40. Záveská Drábková L., Dobrev P.I., Motyka V. Phytohormone profiling across the Bryophytes. PLoS ONE, 2015, 10(5): e0125411. https://doi.org/10.1371/journal.pone.0125411 https://www.ncbi.nlm.nih.gov/pubmed/25974061 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431756
  41. Zürcher E., Müller B. Cytokinin synthesis, signaling and function – advances and new insights. Int. Rev. Cell Mol. Biol., 2016, 324: 1–38. https://doi.org/10.1016/bs.ircmb.2016.01.001 https://www.ncbi.nlm.nih.gov/pubmed/27017005