ISSN 2415-8860 (Online), ISSN 0372-4123 (Print)
logoUkrainian Botanical Journal
  • 2 of 8
Up
Ukr. Bot. J. 2018, 75(4): 322–334
https://doi.org/10.15407/ukrbotj75.04.322
Plant Taxonomy, Geography and Floristics

Differences of Atocion lithuanicum from A. armeria and their hybrid (Sileneae, Caryophyllaceae) by ITS1-ITS2 sequences and secondary structure of their transcripts

Martyniuk V.O.1, Karpenko N.I.2, Tarieiev A.S.3, Kostikov I.Yu.1
Abstract

Many plant species have controversial taxonomical status, and clarification of that status is extremely important in cases of rare taxa when the need for their conservation is discussed. One of them is Atocion lithuanicum – an endemic taxon, treated either as separate species or synonym of A. armeria. The aim of the present study is to infer the taxonomic status of A. lithuanicum, using molecular phylogenetic analysis as well as ITS1 and ITS2 secondary structures comparison of those two taxa and their putative hybrid. The results of our phylogenetic analysis using Bayesian inference reveal that A. lithuanicum is not closely related to A. armeria, but instead is sister to A. compactum. However, phylogenetic relationships on the tree, which includes hybrids and taxa with SNPs, are not resolved well. In contrast, ITS1 secondary structure analysis allows us to distinguish clearly A. lithuanicum from A. armeria. The artificial F1 hybrid between these species has SNPs in all sites that differentiate parental forms and, by secondary structure, are located in the intermediate position between them. Thus, SNPs do not seem to be useful in phylogenetic analysis in this case. At the same time, ITS1 and ITS2 secondary structure reconstruction with SNP sites could be used as markers of hybridization events. Atocion lithuanicum is considered as separate species and could not be treated as synonym or variety of A. armeria.

Keywords: Atocion lithuanicum, endemism, hybridization, single nucleotide polymorphism, phylogeny

Full text: PDF (Eng) 1.07M

References
  1. Agapova N.D., Arkharova K.B., Vakhtina L.I., Zemskova E.A., Tarvis L.V. Numeri chromosomatum Magnoliophytorum florae URSS: Aceraceae–Menyanthaceae. Ed. A. Takhtajan. Leningrad: Nauka, 1990, 509 pp.
  2. Andrienko T.L., Pryadko O.I., Fedoronchuk M.M. Silene lithuanica. In: Chervona knyha Ukrainy. Roslynnyi svit (Red Data Book of Ukraine. Plant Kingdom). Ed. Ya.P. Didukh. Kyiv: Globalconsulting, 2009, p. 404.
  3. Bailey C.D., Carr T.G., Harris S.A., Hughes C.E. Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Mol. Phylogenet. Evol., 2003, 29: 435– 455. https://doi.org/10.1016/j.ympev.2003.08.021 https://www.ncbi.nlm.nih.gov/pubmed/14615185
  4. Caisová L., Marin B., Melkonian M. A consensus secondary structure of ITS2 in the Chlorophyta identified by phylogenetic reconstruction. Protist, 2013, 164: 482–496. https://doi.org/10.1016/j.protis.2013.04.005 https://www.ncbi.nlm.nih.gov/pubmed/23770573
  5. Castro O., Maio A., García J.A.L., Piacenti D., Vázquez-Torres M., Luca P. Plastid DNA sequencing and nuclear SNP genotyping help resolve the puzzle of Central American Platanus. Ann. Bot., 2013, 112(3): 589–602. https://doi.org/10.1093/aob/mct134 https://www.ncbi.nlm.nih.gov/pubmed/23798602 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3718222
  6. Chater A.O., Walters S.M., Akeroyd J.R. Silene. In: Flora Europaea. Eds T.G. Tutin, N.A. Burges, A.O. Chater, J.R. Edmondson, V.H. Heywood, D.M. Moore, D.H. Valentine, S.M. Walters, D.A. Webb. Cambridge: Cambridge Univ. Press, 1993, vol. 1, pp. 191–211.
  7. Clarke L.A., Rebelo C.S., Gonçalves J., Boavida M.G., Jordan P. PCR amplification introduces errors into mononucleotide and dinucleotide repeat sequences. Molecular Pathology, 2001, 54: 351–353. https://doi.org/10.1136/mp.54.5.351 https://www.ncbi.nlm.nih.gov/pubmed/11577179 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1187094
  8. Coleman A.W. The significance of a coincidence between evolutionary l andmarks found in mating a ffinity and a DNA sequence. Protist, 2000, 151: 1–9. https://doi.org/10.1078/1434-4610-00002 https://www.ncbi.nlm.nih.gov/pubmed/10896128
  9. Coleman A.W. Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Res., 2007, 53(1): 3322–3329. https://doi.org/10.1093/nar/gkm233 https://www.ncbi.nlm.nih.gov/pubmed/17459886 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1904279
  10. Coleman A.W., Mai J.C. Ribosomal DNA ITS-1 and ITS-2 sequence comparisons as a tool for predicting genetic relatedness. J. Mol. Evol., 1997, 45: 168–177. https://doi.org/10.1007/PL00006217 https://www.ncbi.nlm.nih.gov/pubmed/9236277
  11. Coode M.J.E., Collen J. Silene. In: Flora of Turkey and the East Aegean Islands. Ed. P.H. Davis. Edinburgh: Edinburgh Univ. Press, 1967, vol. 2, pp. 179–242.
  12. Doyle J.J., Doyle J.L. Isolation of plant DNA from fresh tissue. Focus, 1990, 12: 13–15.
  13. Drábková L.Z., Kirschner J., Štěpánek J., Záveský L., Vlček Č. Analysis of nrDNA polymorphism in closely related diploid sexual, tetraploid sexual and polyploid agamospermous species. Pl. Syst. Evol., 2009, 278: 67–85. https://doi.org/10.1007/s00606-008-0134-8
  14. Fedoronchuk M.M. Ukr. Bot. J., 1997, 54(6): 557–564.
  15. Frajman B., Eggens F., Oxelman B. Hybrid origins and homoploid reticulate evolution within Heliosperma (Sileneae, Caryophyllaceae) – a multigene phylogenetic approach with relative dating. Syst. Biol., 2009a, 58(3): 328–345. https://doi.org/10.1093/sysbio/syp030 https://www.ncbi.nlm.nih.gov/pubmed/20525587
  16. Frajman B., Heidari N., Oxelman B. Phylogenetic relationships of Atocion and Viscaria (Sileneae, Caryophyllaceae) inferred from chloroplast, nuclear ribosomal, and low-copy gene DNA sequences. Taxon, 2009b, 58(3): 811–824.
  17. Frajman B., Tholleson M., Oxelman B . Taxonomic revision of Atocion and Viscaria (Sileneae, Caryophyllaceae). Bot. J. Linn. Soc., 2013, 173: 194–210. https://doi.org/10.1111/boj.12090
  18. Goertzen L.R., Cannone J.J., Gutell R.R., Jansen R.K. ITS secondary structure derived from comparative analysis: implications for sequence alignment and phylogeny of the Asteraceae. Mol. Phylogenet. Evol., 2003, 29: 216– 234. https://doi.org/10.1016/S1055-7903(03)00094-0
  19. Gottschling M., Hilger H.H., Wolf M., Diane N. Secondary structure of the ITS1 transcript and its application in a reconstruction of the phylogeny of Boraginales. Plant Biology, 2001, 3: 629–636. https://doi.org/10.1055/s-2001-19371
  20. Gottschling M., Plötner J. Secondary structure models of the nuclear internal transcribed spacer regions and 5.8S rRNA in Calcioidinelloideae (Peridiniaceae) and other dinoflagellates. Nucleic Acids Res., 2004, 32(1): 307–315. https://doi.org/10.1093/nar/gkh168 https://www.ncbi.nlm.nih.gov/pubmed/14722225 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC373278
  21. Gupta P.K., Roy J.K., Prasad M. Single nucleotide polymorphisms: A new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr. Sci., 2001, 80(4): 524–535.
  22. Hall T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids. Symp. Ser., 1999, 41: 95–98.
  23. Hastings W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 1970, 57: 97–109. https://doi.org/10.2307/2334940
  24. Hodač L., Scheben A.P., Hojsgaard D., Paun O., Hörandl E. ITS polymorphisms shed light on hybrid evolution in apomictic plants: a case study on the Ranunculus auricomus complex. PLoS ONE, 2014, 9(7): e103003. https://doi.org/10.1371/journal.pone.0103003 https://www.ncbi.nlm.nih.gov/pubmed/25062066 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111349
  25. Hřibová E., Čížková J., Christelová P., Taudien S., Langhe E., Doležel J. The ITS1-5.8S-ITS2 sequence region in the Musaceae: structure, diversity and use in molecular phylogeny. PLoS ONE, 2011, 6(3): e17863. https://doi.org/10.1371/journal.pone.0017863 https://www.ncbi.nlm.nih.gov/pubmed/21445344 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3062550
  26. King R.C., Stansfield W.D., Mulligan P.K. A Dictionary of Genetics. 7th ed. Oxford: Oxford Univ. Press, 2007, 608 pp. https://doi.org/10.1093/acref/9780195307610.001.0001
  27. Kunin V., Engelbrekston A., Ochman H., Hugenholz P. Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ. Microbiology, 2011, 12(1): 118–123. https://doi.org/10.1111/j.1462-2920.2009.02051.x https://www.ncbi.nlm.nih.gov/pubmed/19725865
  28. Klokov M.V. Silene. In: Flora URSR. Ed. M.I. Kotov. Kyiv: Vyd-vo Akad. nauk UkrRSR, 1952, vol. 4, pp. 523–553.
  29. Liu J.S., Schardl C.L. A conserved sequence in internal transcribed spacer 1 of plant nuclear RNA genes. Plant Mol. Biol., 1994, 26(2): 775–778. https://doi.org/10.1007/BF00013763 https://www.ncbi.nlm.nih.gov/pubmed/7948932
  30. Martynyuk V.O., Karpenko N.I., Tsarenko O.M. Biol. Bull. of Melitopol State Pedagog. Univ., 2015, 5(1): 8–23.
  31. Martynyuk V.O., Tyshchenko O.V., Karpenko N.I., Tarieiev A.S., Kostikov I.Yu. Taxonomic status of Atocion hypanicum (Klokov) Tzvelev (Caryophyllaceae) inferred from analysis of ITS1 and ITS2 secondary structure. Chornomors'k. bot. z., 2014, 16(4): 416–425. https://doi.org/10.14255/2308-9628/14.104/1
  32. Mau B., Newton M., Larget B. Bayesian phylogenetic inference via Markov chain Monte Carlo methods. Biometrics, 1999, 55(1): 1–12. https://doi.org/10.1111/j.0006-341X.1999.00001.x https://www.ncbi.nlm.nih.gov/pubmed/11318142
  33. Merget B., Wolf M. A molecular phylogeny of Hypnales (Bryophyta) inferred from ITS2 sequence-structure data. BMC Research Notes, 2010, 320(3): 1–8. https://doi.org/10.1186/1756-0500-3-320
  34. Mikhaylova Y.V., Krapivskaya E.E., Rodionov A.V. Molecular phylogenetic study of Xamilensis Raf. recognized as the segregate genus in the Sileneae tribe. Russ. J. Genet., 2016, 6(2): 144–151. https://doi.org/10.1134/S2079059716020052
  35. Mosyakin S.L., Fedoronchuk M.M. Vascular plants of Ukraine. A nomenclatural checklist. Kiev, 1999, xxiii + 345 pp. https://doi.org/10.13140/2.1.2985.0409
  36. Moysiyenko I.I., Tarieiev A.S., Didenko V.I., Karpenko N.I., Kostikov I.Yu. Centaurea breviceps Iljin (Asteraceae, Magnoliophyta): neotype and its annotation according to ITS1 and ITS2 secondary structures. Chornomors'k. bot. z., 2014, 10(3): 276–286. https://doi.org/10.14255/2308-9628/14.103/1
  37. Müller T., Philippi N., Dandekar T., Schultz J., Wolf M. Distinguishing species. RNA, 2007, 13: 1469–1472. https://doi.org/10.1261/rna.617107 https://www.ncbi.nlm.nih.gov/pubmed/17652131 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1950759
  38. Niketić M., Stevanović V., Tomović G. Nomenclatural and taxonomic notes on the flora of Serbia and the Balkan Peninsula. I. Caryophyllaceae. Arch. of Biol. Sciences, 2007, 59(4): 387–396. https://doi.org/10.2298/ABS0704387N
  39. Oxelman B., Lidén M. Generic boundaries in the tribe Sileneae (Caryophyllaceae) as inferred from nuclear rDNA sequences. Taxon, 1995, 44: 525–542. https://doi.org/10.2307/1223498
  40. Oxelman B., Liden M., Rabeler R.K., Popp M. A revised generic classification of the tribe Sileneae (Caryophyllaceae). Nord. J. Bot., 2000, 20(6): 743–748. https://doi.org/10.1111/j.1756-1051.2000.tb00760.x
  41. Oxelman B., Rautenberg A., Thollesson M., Larsson A., Frajman B., Eggens F., Petri A., Aydin Z., Topel M., Brandtberg-Falkman A. Sileneae taxonomy and systematics. 2013. https://www.Sileneae.info (accessed 14 July 2014).
  42. Popp M., Oxelman B. Inferring the history of the polyploid Silene aegea (Caryophyllaceae) using plastid and homoeologous nuclear DNA sequences. Mol. Phylogen. Evol., 2001, 20(3): 478–481. https://doi.org/10.1006/mpev.2001.0977 https://www.ncbi.nlm.nih.gov/pubmed/11527472
  43. Posada D., Crandall K.A. Modeltest: testing the model of DNA substitution. Bioinformatics, 1998, 14: 817–818. https://doi.org/10.1093/bioinformatics/14.9.817 https://www.ncbi.nlm.nih.gov/pubmed/9918953
  44. Red Data Book of Lithuania. Ed. V. Rašomavičius. Kaunas: Lututë, 2007, 800 pp.
  45. Ronquist F., Teslenko M., Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. MRBAYES 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Syst. Biol., 2012, 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029 https://www.ncbi.nlm.nih.gov/pubmed/22357727 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3329765
  46. Ruhl M.W., Wolf M., Jenkins T.M. Compensatory base changes illuminate morphologically difficult taxonomy. Mol. Phylogenet. Evol., 2009, 7: 664–669. https://doi.org/10.1016/j.ympev.2009.07.036
  47. Tarieiev A.S., Girin A.I., Karpenko N.I., Tyshchenko O.V., Kostikov I.Yu. Chornomors'k. bot. z., 2011, 7(4): 309– 317.
  48. Tavaré S. Some probabilistic and statistical problems in the analysis of DNA sequences. In: Lectures on mathematics in the life sciences. Ed. R.M. Miura. Providence: Amer. Mathematical Soc., 1986, vol. 17, pp. 57–86.
  49. Thompson J.D., Higgins D.G., Gibson T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 1994, 22: 4673–4680. https://doi.org/10.1093/nar/22.22.4673 https://www.ncbi.nlm.nih.gov/pubmed/7984417 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC308517
  50. Tzvelev N.N. De generibus tribus Sileneae DC. (Caryophyllaceae) in Europa Orientali. Novitates Systematicae Plantarum Vascularium, 2001, 33: 90–113.
  51. Vaughn J.C., Sperbeck S., Ramsey W.J., Lawrence C.B. A universal model for the secondary structure of 5.8S ribosomal RNA molecules, their contact sites with 28S ribosomal RNAs, and their prokaryotic equivalent. Nucleic Acids Res., 1984, 12: 7479–7502. https://doi.org/10.1093/nar/12.19.7479 https://www.ncbi.nlm.nih.gov/pubmed/6208532 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC320176
  52. White T.J., Bruns T., Lee S., Taylor J.W. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications. Eds M.A. Innis, D.H. Gelfand, J.J. Sninsky, T.J. White. New York: Acad. Press, 1990, pp. 315–322.
  53. Wiemers M., Keller A., Wolf M. ITS2 secondary structure improves phylogeny estimation in a radiation of blue butterflies of the subgenus Agrodiaetus (Lepidoptera: Lycaenidae: Polyommatus). BMC Evol. Biol., 2009, 9: 300. https://doi.org/10.1186/1471-2148-9-300 https://www.ncbi.nlm.nih.gov/pubmed/20035628 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2810301
  54. Yang Z., Rannala B. Bayesian phylogenetic inference using DNA sequences: a Markov chain Monte Carlo method. Mol. Biol. Evol., 1997, 14: 717–724. https://doi.org/10.1093/oxfordjournals.molbev.a025811 https://www.ncbi.nlm.nih.gov/pubmed/9214744
  55. Zapałowicz H. Conspectus florae Galiciae criticus / Krytyczny przegląd roślinności Galicyi. Krakow: Skład Głównyw Księgarni Spółki Wydaw. Polskiej, 1911, vol. 3, 175 pp.
  56. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res., 2003, 31(13): 3406–3415. https://doi.org/10.1093/nar/gkg595 https://www.ncbi.nlm.nih.gov/pubmed/12824337 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC169194