ISSN 2415-8860 (Online), ISSN 0372-4123 (Print)
logoUkrainian Botanical Journal
  • 5 of 10
Up
Ukr. Bot. J. 2017, 74(5): 442–448
https://doi.org/10.15407/ukrbotj74.05.442
Fungi and Fungi-like Organisms

Environmental DNA as a tool for ecological monitoring of fungal communities

Pomohaybo V.M., Makarenko Ya.M.
Abstract

An overview of recently published data on fungal communities based on the environmental DNA technology is provided. In most cases, these scarce data result from the wide range biodiversity studies of eukaryotes while detecting species richness of fungi from eDNA is still poorly studied. However, recent eDNA analyses have already revealed numerous undescribed taxa of fungi in various ecosystems. They also demonstrated that eDNA technology may considerably increase the total number of fungal species comparatively with those described so far using traditional methods. Environmental DNA barcoding as an efficient technique for detecting fungal diversity in various ecosystems provides new insights into the evolution of fungi.

Keywords: fungi, environmental DNA, eDNA barcoding, fungal diversity, evolution

Full text: PDF (Ukr) 687K

References
  1. Allentoft M.E., Collins M., Harker D., Haile J., Oskam Ch.L., Hale M.L., Campos P.F., Samaniego J.A., Gilbert M.Th.P., Willerslev E., Zhang G., Scofield R.P., Holdaway R.N., Bunce M. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc. R. Soc. B., 2012, 279(1748): 4724–4733. https://doi.org/10.1098/rspb.2012.1745.
  2. Amaral-Zettler L.A., Gómez F., Zettler E., Keenan B.G., Amils R., Sogin M.L. Eukaryotic diversity in Spain's river of fire. Nature, 2002, 417(6885): 137.
  3. Arnold A.E., Maynard Z., Gilbert G.S., Coley P.D., Kursar T.A. Are tropical fungal endophytes hyperdiverse? Ecol. Lett., 2000, 3(4): 267–274.
  4. Bass D., Howe A., Brown N., Barton H., Demidova M., Michelle H., Li L., Sanders H., Watkinson S.C., Willcock S., Richards T.A. Yeast forms dominate fungal diversity in the deep oceans. Proc. Biol. Sci., 2007, 274(1629): 3069–3077. https://doi.org/10.1098/rspb.2007.1067.
  5. Berney C., Fahrni J., Pawlowski J. How many novel eukaryotic «kingdoms»? Pitfalls and limitations of environmental DNA surveys. BMC Biol., 2004, 2(13): 1–13.
  6. Blum S.A.E., Lorenz M.G. Mechanism of retarded DNA degradation and prokaryotic origin of DNases in nonsterile soils. Syst. Appl. Microbiol., 1997, 20(4): 513–521.
  7. Briggs A.W., Stenzel U., Meyer M., Krause J., Kircher M., Pääbo S. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA, Nucleic Acids Res., 2010, 38(6), e87. https://doi.org/10.1093/nar/gkp1163.
  8. Buchan A., Newell S.Y., Moreta J.I., Moran M.A. Analysis of internal transcribed spacer regions of rRNA genes in fungal communities in a southeastern U.S. salt marsh. Microbiol. Ecol., 2002, 43(3): 329–340. https://doi.org/10.1007/s00248-001-1062-0
  9. Burgaud G., Le Calvez T., Arzur D., Vandenkoornhuyse P., Barbier G. Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ. Microbiol., 2009, 11(6): 1588–1600. https://doi.org/10.1111/j.1462-2920.2009.01886.x.
  10. Damare S., Raghukumar C. Fungi and macroaggregation in deep-sea sediments. Microbiol. Ecol., 2008, 56(1): 168–177.
  11. Deacon J. Fungal biology. 4 ed., Oxford: Wiley-Blackwell, 2006, vii+372 pp.
  12. Deagle B.E., Eveson J.P., Jarman S.N. Quantification of damage in DNA recovered from highly degraded samples – a case study on DNA in faeces. Front. Zool., 2006, 3(11): 1–10.
  13. Dejean T., Valentini A., Duparc A., Pellier-Cuit S., Pompanon F., Taberlet P., Miaud C. Persistence of environmental DNA in freshwater ecosystems. PLoS ONE, 2011, 6(8), e23398. https://doi.org/10.1371/journal.pone.0023398.
  14. Dover C.L. van, Ward M.E., Scott J.L., Underdown J., Andersen B., Gustafson C., Whalen M., Carnegia R.B. A fungal epizootic in mussels at a deep-sea hydrothermal vent. Mar. Ecol., 2007, 28(1): 54–62. https://doi.org/10.1111/j.1439-0485.2006.00121.x.
  15. Epp L.S., Boessenkool S., Bellemain E.P., Haile J., Esposito A., Riaz T., Erséus C., Gusarov V.I., Edwards M.E., Johnsen A., Stenøien H.K., Hassel K., Kauserud H., Yoccoz N.G., Bråthen K.A., Willerslev E., Taberlet P., Coissac E., Brochmann C. New environmental metabarcodes for analysing soil DNA: potential for studying past and present ecosystems. Mol. Ecol., 2012, 21(8): 1821–1833. https://doi.org/10.1111/j.1365-294X.2012.05537.x.
  16. Garibyan L., Avashia N. Polymerase Chain Reaction. J. Investig. Derm., 2013, 133(3), e6: 1–4. https://doi.org/10.1038/jid.2013.1.
  17. Gilbert M.Th.P., Djurhuus D., Melchior L., Lynnerup N., Worobey M., Wilson A.S., Andreasen C., Dissing J. mtDNA from hair and nail clarifies the genetic relationship of the 15th century Qilakitsoq Inuit mummies. Amer. J. Phys. Anthropol., 2007, 133(2): 847–853. https://doi.org/10.1002/ajpa.20602.
  18. Haile J., Holdaway R., Oliver K., Bunce M., Gilbert M.Th.P., Nielsen R., Munch K., Ho S.Y.W., Shapiro B., Willerslev E. Ancient DNA chronology within sediment deposits: are paleobiological reconstructions possible and is DNA leaching a factor? Mol. Biol. Evol., 2007, 24(4): 982–989. https://doi.org/10.1093/molbev/msm016.
  19. Hannen E.J. van, Mooij W., van Agterveld M.P., Gons H.J., Laanbroek H.J. Detritus-dependent development of the microbial community in an experimental system: qualitative analysis by denaturing gradient gel electrophoresis. Appl. Environ. Microbiol., 1999, 65(6): 2478–2484.
  20. Hawksworth D.L. The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol. Res., 1991, 95(6): 641–655.
  21. Hawksworth D.L. The magnitude of fungal diversity: the 1,5 million species estimate revisited. Mycol. Res., 2001, 105(12): 1422–1432. https://doi.org/10.1017/S0953756201004725.
  22. Hebert P.D.N., Cywinska A., Ball Sh.L., Waard J.R. de. Biological identifications through DNA barcodes. Proc. Roy. Soc. B., 2003, 270(1512): 313–321. https://doi.org/10.1098/rspb.2002.2218.
  23. Horton T.R., Bruns T.D. The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol. Ecol., 2001, 10(8): 1855–1871.
  24. Jebaraj C.S., Raghukumar C., Behnke A., Stoeck T. Fungal diversity in oxygen-depleted regions of the Arabian Sea revealed by targeted environmental sequencing combined with cultivation. FEMS Microbiol. Ecol., 2010, 71(3): 399–412. https://doi.org/10.1111/j.1574-6941.2009.00804.x.
  25. Jones M.D.M., Forn I., Gadelha C., Egan M.J., Bass D., Massana R., Richards T.A. Discovery of novel intermediate forms redefines the fungal tree of life. Nature, 2011, 474(7350): 200–203. https://doi.org/10.1038/nature09984.
  26. Kirk P.M., Cannon P.F., Minter D.W., Stalpers J.A. Dictionary of the Fungi. 10th ed., UK: CABI Europe, 2008, xi+748 pp.
  27. Kohlmeyer J., Kohlmeyer E. Marine mycology: the higher fungi, New York: Acad. Press, 1979, xiv+690 pp.
  28. Kolmodin L.A., Birch D.E. Polymerase chain reaction: Basic principles and routine practice. In: Methods in molecular biology. 2 ed. Eds B.-Y. Chen, H.W. Janes, Totowa (NJ): Humana Press Inc., 2002, vol. 192, pp. 3–18.
  29. Kress W.J., Wurdack K.J., Zimmer E.A., Weigt L.A., Janzen D.H. Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. USA, 2005, 102(23): 8369–8374. https://doi.org/10.1073/pnas.0503123102.
  30. Lawley B., Ripley S., Bridge P., Convey P. Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils. Appl. Environ. Microbiol., 2004, 70(10): 5963–5972. https://doi.org/10.1128/AEM.70.10.5963–5972.2004.
  31. Le Calvez T., Burgaud G., Mahé S., Barbier G., Vandenkoornhuyse P. Fungal diversity in deep-sea hydrothermal ecosystems. Appl. Environ. Microbiol., 2009, 75(20): 6415–6421. https://doi.org/10.1128/AEM.00653-09.
  32. Lefèvre E., Bardot C., Noöl C., Carrias J.F., Viscogliosi E., Amblard C., Sime-Ngando T. Unveiling fungal zooflagellates as members of freshwater picoeukaryotes: evidence from a molecular diversity study in a deep meromictic lake. Environ. Microbiol., 2007, 9(1): 61–71. https://doi.org/10.1111/j.1462-2920.2006.01111.x.
  33. Lefèvre E., Roussel B., Amblard C., Sime-Ngando T. The molecular diversity of freshwater picoeukaryotes reveals high occurrence of putative parasitoids in the plankton. PLoS ONE, 2008, 3(6), e2324: 1–10. https://doi.org/10.1371/journal.pone.0002324.
  34. Lefranc M., Thénot A., Lepère C., Debroas D. Genetic diversity of small eukaryotes in lakes differing by their trophic status. Appl. Environ. Microbiol., 2005, 71(10): 5935–5942. https://doi.org/10.1128/AEM.71.10.5935–5942.2005.
  35. Lepère C., Boucher D., Jardillier L., Domaizon I., Debroas D. Succession and regulation factors of small eukaryote community composition in a lacustrine ecosystem (Lake Pavin). Appl. Environ. Microbiol., 2006, 72(4): 2971–2981. https://doi.org/10.1128/AEM.72.4.2971–2981.2006.
  36. Lesaulnier C., Papamichail D., McCorkle S., Ollivier B., Skiena S., Taghavi S., Zak D., van der Lelie D. Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen. Environ. Microbiol., 2008, 10(4): 926–941. https://doi.org/10.1111/j.1462-2920.2007.01512.x.
  37. Mann K.H. Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems. Limn. Oceanogr., 1988, 33(4(2)): 910–930.
  38. Massana R., Pedrós-Alió C. Unveiling new microbial eukaryotes in the surface ocean. Curr. Opin. Microbiol., 2008, 11(3): 213–218. https://doi.org/10.1016/j.mib.2008.04.004.
  39. O'Brien H.E., Parrent J.L., Jackson J.A., Moncalvo J.-M., Vilgalys R. Fungal community analysis by large-scale sequencing of environmental samples. Appl. Environ. Microbiol., 2005, 71(9): 5544–5550. https://doi.org/10.1128/AEM.71.9.5544–5550.2005.
  40. Ogram A., Sayler G.S., Barkay T. The extraction and purification of microbial DNA from sediments. J. Microbiol. Methods, 1987, 7(2–3): 57–66.
  41. Olsen G.J., Lane D.J., Giovannoni S.J., Pace N.R., Stahl D.A. Microbial ecology and evolution: a ribosomal RNA approach. Annu. Rev. Microbiol., 1986, 40: 337–365.
  42. Overballe-Petersen S., Harms K., Orlando L.A.A., Mayar V.M., Rasmussen S., Dahl T.W., Rosing M.T., Poole A.M., Sicheritz-Ponten Th., Brunak S., Inselmann S., Vries J. de, Wackernagel W., Pybus O.G., Nielsen B., Johnsen P.J., Nielsen K.M., Willerslev E. Bacterial natural transformation by highly fragmented and damaged DNA. Proc. Natl Acad. Sci. USA, 2013, 110(49): 19860–19865. https://doi.org/10.1073/pnas.1315278110.
  43. Paul J.H., Jeffrey W.H., DeFlaun M.F. Dynamics of extracellular DNA in the marine environment. Appl. Environ. Microbiol., 1987, 53(1): 170–179.
  44. Paul J.H., Jeffrey W.H., David A.W., DeFlaun M.F., Cazares L.H. Turnover of extracellular DNA in eutrophic and oligotrophic freshwater environments of southwest Florida. Appl. Environ. Microbiol., 1989, 55(7): 1823–1828.
  45. Pietramellara G., Ascher J., Borgogni F., Ceccherini M.T., Guerri G., Nannipieri P. Extracellular DNA in soil and sediment: fate and ecological relevance. Biol. Fertil. Soils, 2009, 45(3): 219–235. https://doi.org/10.1007/s00374-006-0156-8.
  46. Porter T.M., Schadt C.W., Rizvi L., Martin A.P., Schmidt S.K., Scott-Denton L., Vilgalys R., Moncalvo J.M. Widespread occurrence and phylogenetic placement of a soil clone group adds a prominent new branch to the fungal tree of life. Mol. Phylogen. Evol., 2008, 46(2): 635–644. https://doi.org/10.1016/j.ympev.2007.10.002.
  47. Poté J., Mavingui P., Navarro E., Rosselli W., Wildi W.P., Vogel T.M. Extracellular plant DNA in Geneva groundwater and traditional artesian drinking water fountains. Chemosphere, 2009, 75(4): 498–504. https://doi.org/10.1016/j.chemosphere.2008.12.048.
  48. Prober S.M., Leff J.W., Bates S.T., Scott T., Borer E.T., Firn J., Harpole W.S., Lind E.M., Seabloom E.W., Adler P.B., Bakker J.D., Cleland E.E., DeCrappeo N.M., DeLorenze E., Hagenah N., Hautier Y., Hofmockel K.S., Kirkman K.P., Knops J.M.H., La Pierre K.J., MacDougall A.S., McCulley R.L., Mitchell Ch.E., Risch A.C., Schuetz M., Stevens C.J., Williams R.J., Fierer N., Klironomos J. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol. Lett., 2015, 18(1): 85–95. https://doi.org/10.1111/ele.12381.
  49. Raghukumar S. The role of fungi in marine detrital processes. In: Marine microbiology: Facets and opportunities. Ed. N. Ramaiah, India: Natl. Inst. of Oceanography, 2004, pp. 91–101.
  50. Richards T.A., Bass D. Molecular screening of free-living microbial eukaryotes: diversity and distribution using a meta-analysis. Curr. Opin. Microbiol., 2005, 8(3): 240–252. https://doi.org/10.1016/j.mib.2005.04.010.
  51. Rosling A., Cox F., Cruz-Martinez K., Ihrmark K., Grelet, G.-A., Lindahl B. D., Menkis A., James T. Y.. Archaeorhizomycetes: Unearthing an ancient class of ubiquitous soil fungi. Science, 2011, 333(6044): 876–879. https://doi.org/10.1126/science.1206958
  52. Schadt C.W., Martin A.P., Lipson D.A., Schmidt S.K. Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science, 2003, 301(5638): 1359–1361.
  53. Shirouzu T., Uno K., Hosaka K., Hosoya T. Early-diverging wood-decaying fungi detected using three complementary sampling methods. Mol. Phyl. Evol., 2016, 98: 11–20. https://doi.org/10.1016/j.ympev.2016.01.015.
  54. Šlapeta J., Moreira D., López-García P. The extent of protist diversity: insights from molecular ecology of freshwater eukaryotes. Proc. R. Soc. B, 2005, 272(1576): 2073–2081. https://doi.org/10.1098/rspb.2005.3195.
  55. Soumya K.S., Jimly C.J., Neil S.C., Smitha S.L., Ramya K.D., Anil Kumar P.R., Manuel Th., Rosamma Ph. Filamentous fungal isolates from the continental shelf and slope sediments of Arabian Sea. Int. J. Res. Mar. Sci., 2013, 2(1): 26–32.
  56. Suh S.-O., McHugh J.V., Pollock D.D., Blackwell M. The beetle gut: a hyperdiverse source of novel yeasts. Mycol. Res., 2005, 109(3): 261–265. https://doi.org/10.1017/S0953756205002388.
  57. Taberlet P., Prud'Homme S.M., Campione E., Roy J., Miquel C., Shehzad W., Gielly L., Rioux D., Choler P., Clément J.-C., Melodelima C., Pompanon F., Coissac E. Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies. Mol. Ecol., 2012, 21(8): 1816–1820. https://doi.org/10.1111/j.1365-294X.2011.05317.x.
  58. Takishita K., Tsuchiya M., Reimer J.D., Maruyama T. Molecular evidence demonstrating the basidiomycetous fungus Cryptococcus curvatus is the dominant microbial eukaryote in sediment at the Kuroshima Knoll methane seep. Extremophiles, 2006, 10(2): 165–169. https://doi.org/10.1007/s00792-005-0495-7.
  59. Thomsen Ph.F., Kielgast J., Iversen L.L., Wiuf C., Rasmussen M., Gilbert M.Th.P., Orlando L., Willerslev E. Monitoring endangered freshwater biodiversity using environmental DNA. Mol. Ecol., 2011, 21(11): 2565–2573. https://doi.org/10.1111/j.1365-294X.2011.05418.x.
  60. Thomsen Ph.F., Kielgast J., Iversen L.L., Møller P.R., Rasmussen M., Willerslev E. Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS ONE, 2012, 7(8), e41732. https://doi.org/10.1371/journal.pone.0041732.
  61. Thomsen Ph.F., Willerslev E. Environmental DNA – An emerging tool conservation for monitoring past and present biodiversity. Biol. Conserv., 2015, 183: 4–18. doi.org/10.1016/j.biocon.2014.11.019
  62. Vandenkoornhuyse P., Baldauf S.L., Leyval C., Straczek J., Young J.P.W. Extensive fungal diversity in plant roots. Science, 2002, 295(5562): 2051.
  63. Vincent J.B., Weiblen G.D., May G. Host associations and beta diversity of fungal endophyte communities in New Guinea rainforest trees. Mol. Ecol., 2016, 25(3): 825–841. https://doi.org/10.1111/mec.13510.
  64. Willerslev E., Hansen A.J., Binladen J., Brand T.B., Gilbert M.Th.P., Shapiro B., Bunce M., Wiuf C., Gilichinsky D.A., Cooper A. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science, 2003, 300(5620): 791–795. https://doi.org/10.1126/science.1084114.
  65. Willerslev E., Hansen A.J., Rønn R., Brand T.B., Barnes I., Wiuf C., Gilichinsky D.A., Mitchell D., Cooper A. Long-term persistence of bacterial DNA. Curr. Biol., 2004, 14(1): R9–R10.
  66. Willerslev E., Cappellini E., Boomsma W., Nielsen R., Hebsgaard M.B., Brand T.B., Hofreiter M., Bunce M., Poinar H.N., Dahl-Jensen D., Johnsen S., Steffensen J.P., Bennike O., Schwenninger J.-L., Nathan R., Armitage S., Hoog C.-J. de, Alfimov V., Christl M., Beer J., Muscheler R., Barker J., Sharp M., Penkman K.E.H., Haile J., Taberlet P., Gilbert M.Th.P., Casoli A., Campani E., Collins M.J. Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science, 2007, 317(5834): 111–114. https://doi.org/10.1126/science.1141758.