ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 8 of 11
Up
Ukr. Bot. J. 2016, 73(5): 503–509
https://doi.org/10.15407/ukrbotj73.05.503
Plant Physiology, Biochemistry, Cell and Molecular Biology

Gibberellin-like substances in ontogenesis of the water fern Salvinia natans (Salviniaceae)

Vasyuk V.A., Lichnevskiy R.V., Kosakivska I.V.
Abstract

The pattern of gibberellin-like substances accumulation and localization in organs of heterosporous annual water fern Salvinia natans at the various stages of ontogenesis was studied. For the first time, gibberellin GA3, which dynamics and localization allow to classify it as 'working' gibberellin, was identified in the fern organs using the high-performance chromatography – mass-spectrometry. The largest amount of free GA3 was found in floating fronds while submerged ones showed insignificant accumulations of bound forms. At the stages of sporophyte growth and formation of sporocarps there was observed some increase in bound GA3 forms content. Sporocarp accumulation was characterized by almost a fourfold increase in bound forms content. Predominance of gibberellins free forms over bound ones was reported for all organs and at all phenological phases while submerged fronds contained higer quantities of free forms. Dynamics of changes in gibberellins content in organs of S. natans corresponds with the fern development stages and indirectly indicate that the phytohormone is involved in the regulation of growth and reproduction processes.

Keywords: Salvinia natans, gibberellins-like substances, ontogenesis, growth, development

Full text: PDF (Ukr) 679K

References
  1. Agnistikova V.N. Metody opredeleniya regulyatorov rosta rasteniy i gerbitsydov, Moscow: Nauka, 1966, 93 pp.
  2. Anterola A., Shanle E., Mansouri K., Shuette S., Renzaglia K. Planta, 2009, 229(4): 1003–1007. https://doi.org/10.1007/s00425-008-0875-1 https://www.ncbi.nlm.nih.gov/pubmed/19112579
  3. Atallah N.M., Banks J.A. Plant Sci., 2015, 6:100–107.
  4. Babenko L.M., Sheyko O.A., Kosakivska I.V., Vedenicheva N.P., Negretskiy V.A., Vasheka O.V. The Bulletin of Kharkiv National Agrarian University. Ser. Biology, 2015, 1(34): 80–103.
  5. Daviere J.M., Achard P. Development., 2013, 140: 1147–1151. https://doi.org/10.1242/dev.087650 https://www.ncbi.nlm.nih.gov/pubmed/23444347
  6. Gantait S., Sinniah U.R., Ali N., Sahu N.C. Curr. Protein Pept. Sci., 2015, 16(5): 406–412. https://doi.org/10.2174/1389203716666150330125439 https://www.ncbi.nlm.nih.gov/pubmed/25824386
  7. Gaskin P., Kobayashi M., Spray C.R., Phinney B.O., MacMillan J. Plant Physiol. Rockville, 2001, 115: 413–418.
  8. Grunzweig J.M., Katan J., Wodner M., Ben-Tal Y. Phytochemistry, 1997, 46(5): 811–815. https://doi.org/10.1016/S0031-9422(97)00383-X
  9. Gupta R., Chakrabarty S. Gibberellic acid in plant, Plant Signal Behav., 2013, 8(9): e25504. Publ. online 2013 Jun 28. http://doi.org/10.4161/psb.25504 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4002599
  10. Karnachuk R.A., Vayshlya O.B., Dorofeev V.Y., Fiziol. rast., 2003, 50(2): 265–270.
  11. Kucera B., Cohn M.A., Leubner-Metzger G., Seed Sci. Res., 2005, 15: 281–307. https://doi.org/10.1079/SSR2005218
  12. Kulaeva O.N., Prokoptseva O.S. Biochimiya, 2004, 69(3): 293–311.
  13. Muromtsev G.S., Chkanikiv G.C., Kulaeva O.N., Gamburg K.Z. Osnovy khimicheskoy regulyatsii rostay i produktivnosti rasteniy, Moscow: Ahropromizdat, 1987, 383 pp.
  14. Phinney B.O., Spray C. Chemical genetics and gibberellin pathway in Zea mays L. In: Plant growth substances, London: Acad. Press, 1982, pp. 101–110. https://www.ncbi.nlm.nih.gov/pubmed/7070249
  15. Reynante L. O. Science, 2014, 346(6208): 469–473. https://doi.org/10.1126/science.1259923 https://www.ncbi.nlm.nih.gov/pubmed/25342803
  16. Ross S.D., Pharis R.P. Binder W.D. Growth regulators and conifers: their physiology and potential uses in forestry. In: Plant growth regulating chemicals. Ed. L.G. Nickell, Boca Raton: CRC Press, 1989, vol. 2, pp. 35–78.
  17. Sivasangari Ramya S., Nagaraj S., Vijayanand N. Rec. Res. Sci. and Technol., 2010, 2(1): 45–52.
  18. Sytnnik K.M., Musatenko L.I., Dasyuk V.A., Vedenicheva N.P., Generalova V.N., Martin G.I., Nesterova A.N. Hormonalnyi kompleks roslyn ta hrybiv, Kyiv: Akadempereodika, 2003, 186 pp.
  19. Tai-ping Sun. Science, 2014, 346(6208): 423–424. https://doi.org/10.1126/science.1260948 https://www.ncbi.nlm.nih.gov/pubmed/25342787 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4406044
  20. Tarakhovskaia E.R., Maslov Yu.I., Shishova M.F. Fiziol. rast., 2007, 54(2): 186–194.
  21. Vandenbussche E., Fierro A.S., Wiedemann G., Reski R., Van Der Straeten D. BMC Plant Biology, 2007, 7: 65. https://doi.org/10.1186/1471-2229-7-65 https://www.ncbi.nlm.nih.gov/pubmed/18047669 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2234411
  22. Vasyuk V.A., Kosakivska I.V. Ukr. Bot. J., 2015, 72(1): 65–72. https://doi.org/10.15407/ukrbotj72.01.065
  23. Yamaguchi S. Annu. Rev. Plant Biol., 2008, 59: 225–251. https://doi.org/10.1146/annurev.arplant.59.032607.092804 https://www.ncbi.nlm.nih.gov/pubmed/18173378
  24. Zhang Zh., Dai Sh. Acta Ecol. Sinica, 2010, 30(7): 1882–1893.