ISSN 2415-8860 (online), ISSN 0372-4123 (print)
logoUkrainian Botanical Journal
  • 20 of 22
Up
Ukr. Bot. J. 2013, 70(2): 264–269
https://doi.org/10.15407/ukrbotj70.02.264
Plant Physiology, Biochemistry, Cell and Molecular Biology

Effect of short-term temperature stresses on the level of indole-3-acetic acid in plants with different types of ecological strategy

Kosakivska I.V., Voytenko L.V., Lichnevskiy R.V., Ustinova A.Yu.
Abstract

We analyzed the level of free and conjugated forms of indole-3-acetic acid (IAA) in 7 day seedlings of plants with different types of ecological strategy in control conditions and after short-term high and low temperature stresses. It was revealed that in control conditions the level of the conjugated form of IAA in violent Festuca pratensis and ruderal species Amaranthus caudatus and Brassica campestris was higher compared with the free form of the plant hormone. Patient Rumex patientia × R. tianshanicus showed a high level of the free form and not of conjugated IAA. The level of free IAA rose in violent and ruderal species after heat stress and in patient species after cold stress. The obtained data allow concluding that changes in the level of conjugated and free forms of IAA in the investigated plants after short-term temperature stresses correlate with the type of their ecological strategy. IAA content may be used as a possible biomarker of plant thermotolerance and their ecological strategy type.

Keywords: Festuca pratensis, Rumex patientia × R. tianshanicus, Brassica campestris, Amaranthus caudatus, indole-3-acetic acid, temperature stresses, ecological strategy

Full text: PDF (Ukr) 214K

References
  1. Ackerly D.D., Dudley S.A., Sulton S.E. et al. Bioscience, 2000, 50 (11): 979–995. https://doi.org/10.1641/0006-3568(2000)050[0979:TEOPET]2.0.CO;2
  2. Albacete A., Ghanem M.E., Martinez-Andjar C. et al. J. Exp. Bot., 2008, 59(4): 4119–4131.
  3. Borzenkova R.A., Yashkov M.Yu., Pyankov V.I. Fiziol. rast., 2001, 48, № 2, pp. 229–237.
  4. Davis P.J. Plant Hormones, Dordrecht: Kluwer, 2004, 750 p.
  5. Gamburg Z.G., Enikeeva A.G., Shvetsov S.G. Fiziol. i biokhim. kult. rast., 1992, 24, № 1, pp. 47–53.
  6. Golovatskaya I.F. Fiziol. rast., 2008, 55, № 3, pp. 348–354.
  7. Grime J.P. Nature, 1974, 250(1): 26–31. https://doi.org/10.1038/250026a0
  8. Kosakivska I.V. Fizioloho-biokhimichni osnovy adaptatsiyi roslyn do stresiv, Kyiv: Stal, 2003, 191 p.
  9. Maslova S.P., Tabalenkova G.N., Kurenkova S.V., Plyusina S.N. Fiziol. rast., 2007, 54, № 4, pp. 555–561.
  10. Ramenskiy L.G. Izbrannye raboty, Leningrad: Nauka, 1971, 334 p.
  11. Shevyakova N.I., Musatenko L.I., Stetsenko L.A. i dr. Fiziol. i biokhim. kult. rast., 2010, 42, № 6, pp. 483–490.
  12. Terek O.I. Rist roslyn, Lviv: Vydavnychyi tsentr LNU im. Ivana Franka, 2007, 247 p.
  13. Usmanov I.Yu., Kudoyarova G.R., Martynova A.V. i dr. Fiziol. i biokhim. kult. rast., 1990, 22, № 1, pp. 65–68.
  14. Vedenycheva N.P., Voytenko L.V., Musatenko L.Y., Stetsenko L.A., Shevyakova N.Y. Visn. Kharkiv. nats. ahrar. un-tu, 2010, Vyp. 3 (21), pp. 30–36.
  15. Veselov D., Sabirzhanova I., Akhiyarova G. i dr. Fiziol. rast., 2002, 49, № 4, pp. 572–576.
  16. Vysotskaya L.B., Cherkozyanova A.V., Veselov S.Yu., Kudoyarova G.R. Fiziol. rast., 2007, 54, № 3, pp. 455–460.